Acid-base and redox reaction – 2021/20 GCE Chemistry A Component 01

1. Nov/2021/Paper_H432/01/No.18(a _ c)

A student carries out an experiment to determine the percentage by mass of copper in an ore containing copper in its +2 oxidation state.

The student is provided with a sample of the copper ore, $1 \, \text{mol dm}^{-3}$ potassium iodide, KI(aq), and $0.0200 \, \text{mol dm}^{-3}$ sodium thiosulfate, $\text{Na}_2 \text{S}_2 \text{O}_3$.

The student's method is outlined below.

- **Step 1** Add an excess of warm nitric acid to 2.50 g of the ore. The copper(II) compounds in the ore react, forming aqueous copper(II) nitrate.
- Step 2 Filter the mixture to remove the unreacted rock. Neutralise the filtrate.
- Step 3 Add an excess of aqueous potassium iodide, KI(aq).
 A precipitate of copper(I) iodide and a solution of iodine, I₂(aq), forms.
- **Step 4** Titrate the mixture from **Step 3** using 0.0200 mol dm⁻³ sodium thiosulfate, Na₂S₂O₃ in the burette.

$$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$$

 $26.55\,\mathrm{cm^3}$ of $0.0200\,\mathrm{mol\,dm^{-3}}$ $\mathrm{Na_2S_2O_3}$ are required to reach the end point.

(a) In Step 1, the student observed that bubbles of gas were produced.

Suggest the formula of the copper(II) compound which reacted with ${\rm HNO_3}$ to form the gas, and write a full equation for the reaction.

Formula:	• • • •
Equation:	[2]
Write an ionic equation, including state symbols, for the reaction in Step 3.	
	[1]
Suggest a suitable indicator for this titration and state the colour change at the end point Step 4 .	t ir
	Equation: Write an ionic equation, including state symbols, for the reaction in Step 3 . Suggest a suitable indicator for this titration and state the colour change at the end point

Indicator:

2.	Nov	/2020	/Paper_	H432	/01	/No.1

Several students titrate $25.00\,\mathrm{cm^3}$ of the same solution of sodium hydroxide, NaOH(aq) with hydrochloric acid, HCl(aq).

One student obtains a smaller titre than the other students.

Which procedure explains the smaller titre?

- A The burette readings are taken from the top of the meniscus instead of the bottom of the meniscus.
- **B** The conical flask is rinsed with water before carrying out the titration.
- **C** An air bubble is released from the jet of the burette during the titration.
- **D** The pipette is rinsed with water before filling with NaOH(aq).

Your answer		[1]
our answer		[1]

3. Nov/2020/Paper_H432/01/No.4

Phosphoric acid is a tribasic acid.

What is the mass of Ca(OH)_2 that completely neutralises $100\,\text{cm}^3$ of $0.100\,\text{mol\,dm}^{-3}$ phosphoric acid?

- **A** 0.49g
- **B** 0.74 g
- **C** 1.11 g
- **D** 2.22g

Your answer [1]

4. Nov/2020/Paper H432/03/No.4

A student carries out an investigation to identify two metals, **M** and **X**, by two different methods.

(a) The student is provided with a sample of metal M.

The student analyses metal **M** using a 'back-titration' technique:

- The metal is reacted with excess acid.
- The resulting solution is titrated to determine the amount of acid remaining after the reaction.

Stage 1

The student adds $100 \,\mathrm{cm}^3$ of $2.10 \,\mathrm{mol \, dm}^{-3} \,\mathrm{HC}\,l(\mathrm{aq})$ to $6.90 \,\mathrm{g}$ of \mathbf{M} .

An excess of HC1(aq) has been used to ensure that all of metal M reacts.

A redox reaction occurs, forming a solution containing **M** in the +2 oxidation state.

Stage 2

The resulting solution from **Stage 1** is made up to 250.0 cm³ with distilled water.

Stage 3

A 25.00 cm³ sample of the diluted solution from **Stage 2** is titrated with 0.320 mol dm⁻³ NaOH(aq).

The NaOH(aq) reacts with excess HC1(aq) that remains in **Stage 1**:

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

The student repeats the titration to obtain concordant titres.

Titration results (The trial titre has been omitted.)

The burette readings have been recorded to the nearest 0.05 cm³.

	1	2	3
Final reading/cm ³	27.80	37.55	32.20
Initial reading/cm ³	0.50	10.00	5.00

(i)	In Stage 1 , a redox reaction takes place between M and HCl(aq), forming hydrogen and
	a solution containing M in the +2 oxidation state.

Write an overall equation, with state symbols, for this reaction. Write half-equations for the oxidation and reduction processes.

Overall equation	 	
Oxidation half-equation	 	
Reduction half-equation	 	

[3]

ocrsolvedexampapers.co.uk

(ii)	In S	Stage 1, suggest two observations that would confirm that all of metal M has reacted.
	1	
	2	
		[2]
		[-1
iii)	In S	Stage 3, write the ionic equation for the reaction taking place in the titration.
		[1]
iv)	Met	al M can be identified following the steps below.
	1.	The amount, in mol, of excess $HC1(aq)$ that remains after the reaction of $\bf M$ with
	2.	HCl(aq). The amount, in mol, of $HCl(aq)$ that reacted with M .
	3.	The identity of metal M .
	Δns	alvse the results to identify metal M

(b) The student is provided with the carbonate of an unknown metal, X₂CO₃.

The student measures the mass loss when the $\mathbf{X}_2\mathrm{CO}_3$ is reacted with an **excess** of hydrochloric acid. The equation is shown below.

$$\mathbf{X}_2 \text{CO}_3(s) + 2 \text{HC} l(\text{aq}) \rightarrow 2 \mathbf{X} \text{C} l(\text{aq}) + \text{CO}_2(g) + \text{H}_2 \text{O}(l)$$

The reaction is carried out using this method:

- Step 1 Add 100 cm³ HCl(aq) to a conical flask and weigh.
- **Step 2** Add $\mathbf{X}_2 CO_3$ to the conical flask and immediately reweigh.
- **Step 3** After 5 minutes, reweigh the conical flask and contents.

Results

Mass of conical flask + HCl(aq)	172.93g
Mass of conical flask + \mathbf{X}_2 CO ₃ + HC l (aq) before reaction	187.50 g
Mass of conical flask + contents after 5 minutes	184.75g

(i) Calculate the amount, in mol, of CO₂ released in the reaction.

(ii) Calculate the molar mass of X₂CO₃ and identify metal X.

Molar mass of
$$X_2CO_3 = \dots g mol^{-1}$$
 Metal $X = \dots [3]$

ocrsolvedexampapers.co.uk

(c)	Afte	r analysing the results, the student was told that their molar mass of $\mathbf{X}_2\mathrm{CO}_3$ was incorrect.		
	The student evaluated the experiment for possible reasons for the incorrect result.			
	(i)	The student wondered whether the reaction was complete when the mass was recorded after 5 minutes (Step 3).		
		How could the student modify the experimental procedure to be confident that the reaction was complete?		
		[1]		
	(ii)	The student finds out that carbon dioxide is slightly soluble in water.		
		State and explain how the solubility of ${\rm CO_2}$ would affect the calculated molar mass of ${\rm X_2CO_3}.$		
		[2]		