Alcohols and haloalkanes - 2021/20 GCE AS Chemistry A

1. Nov/2021/Paper_H032/01/No.17

What is the systematic name of the compound below?

- A 3-methylhex-5-en-4-ol
- B 4-methylhex-1-en-3-ol
- C 2-ethylpent-4-en-3-ol
- D 4-ethylpent-1-en-3-ol

Your answer		[1]

2. Nov/2021/Paper_H032/01/No.24(c)

- (c) Compound A can be refluxed with a reagent to make alcohol C.
 - (i) Choose a reagent for this reaction and complete the equation for this reaction.

Your equation should show the structure of alcohol C.

(ii) Draw a labelled diagram to show how you would set up apparatus for reflux.

[2]

Nov/2020/Paper_H032/01/No.1	1/No.17
---	---------

Potassium ferrate(VI) contains two potassium ions for every ferrate(VI) ion.

What is the formula of the ferrate(VI) ion?

- A FeO_3^{2-}
- B FeO₄²⁻
- C FeO₅²⁻
- D FeO₆²⁻

Your answer	[1]
-------------	-----

4. Nov/2021/Paper_H032/02/No.7(c)

- (c) Compounds A and B are structural isomers of (CH₃)₃COH.
 - (i) Compound A is a secondary alcohol.

What is the systematic name of compound A?

(ii) Compound B is a branched primary alcohol.

Compound B is refluxed with acidified potassium dichromate(VI) as an oxidising agent.

Write the equation for the reaction that takes place.

Use structures for organic compounds and [O] for the oxidising agent.

5. Nov/2020/Paper H032/02/No.5

This question is about the alcohols A-F shown below.

$$A$$
OH B OH C

- (a) Which of the alcohols A-F are secondary alcohols?
 -[2]
- (b) Complete a balanced equation for the complete combustion of alcohol C.

$$CH_3CH_2CH(OH)CH_3 + \dots + \dots + \dots + \dots$$
 [1]

- (c) What is the systematic name of alcohol B?
 -[1]
- (d) Alcohol A can be prepared by the alkaline hydrolysis of the bromoalkane, (CH₃)₂CHCH₂CH₂Br. The hydrolysis with aqueous NaOH is shown in **equation 5.1**.

$$(CH_3)_2 CHCH_2 CH_2 Br + NaOH \longrightarrow (CH_3)_2 CHCH_2 CH_2 OH + NaBr$$
 equation 5.1 alcohol A

A student gently heats a mixture of (CH₃)₂CHCH₂CH₂Br and NaOH(aq) for 25 minutes.

(i) Calculate the atom economy for the preparation of alcohol A in equation 5.1.

(ii) Outline the mechanism for the alkaline hydrolysis of (CH₃)₂CHCH₂CH₂Br. The structure of (CH₃)₂CHCH₂CH₂Br has been provided.

Show curly arrows, relevant lone pairs and dipoles, and the products.

$$(\operatorname{CH}_3)_2\operatorname{CHCH}_2 - - \operatorname{C} - - \operatorname{Br} - - - \operatorname{H}$$

			[3]
	(iii)	Name this type of mechanism.	
			[1]
e)		e student decides to prepare alcohol A using the same method as in (d) but using the same (CH_3) ₂ CHCH_2 CH ₂ Cl instead of the bromoalkane, (CH_3) ₂ CHCH ₂ CH ₂ Br.	ig the
	Stat diffe	te and explain how the rates of hydrolysis of the chloroalkane and the bromoalkane er.	would
			[2]

(f)* The structures of A-F are repeated below.

Compound X is one of the alcohols A-F.

A student refluxes compound \mathbf{X} with acidified potassium dichromate(VI) as an oxidising agent. A pure sample of the organic product \mathbf{Y} is obtained from the resulting mixture.

The mass spectrum and IR spectrum of Y are shown below.

Mass spectrum of Y

IR spectrum of Y

ocrsolvedexampapers.co.uk

Using this information, identify compound ${\bf X}$ and product ${\bf Y}$, and write an equation for the formation of product ${\bf Y}$ from compound ${\bf X}$. You may use [O] to represent the oxidising agent.						
In your answer you should make clear how your conclusions are linked to the evidence. [6]						
Additional annual if annuind						
Additional answer space if required						