Alcohols and haloalkanes - 2021/20 GCE AS Chemistry A 1. Nov/2021/Paper_H032/01/No.17 What is the systematic name of the compound below? - A 3-methylhex-5-en-4-ol - B 4-methylhex-1-en-3-ol - C 2-ethylpent-4-en-3-ol - D 4-ethylpent-1-en-3-ol | Your answer | | [1] | |-------------|--|-----| # 2. Nov/2021/Paper_H032/01/No.24(c) - (c) Compound A can be refluxed with a reagent to make alcohol C. - (i) Choose a reagent for this reaction and complete the equation for this reaction. Your equation should show the structure of alcohol C. (ii) Draw a labelled diagram to show how you would set up apparatus for reflux. [2] | Nov/2020/Paper_H032/01/No.1 | 1/No.17 | |---|---------| |---|---------| Potassium ferrate(VI) contains two potassium ions for every ferrate(VI) ion. What is the formula of the ferrate(VI) ion? - A FeO_3^{2-} - B FeO₄²⁻ - C FeO₅²⁻ - D FeO₆²⁻ | Your answer | [1] | |-------------|-----| |-------------|-----| ### **4.** Nov/2021/Paper_H032/02/No.7(c) - (c) Compounds A and B are structural isomers of (CH₃)₃COH. - (i) Compound A is a secondary alcohol. What is the systematic name of compound A? (ii) Compound B is a branched primary alcohol. Compound B is refluxed with acidified potassium dichromate(VI) as an oxidising agent. Write the equation for the reaction that takes place. Use structures for organic compounds and [O] for the oxidising agent. #### 5. Nov/2020/Paper H032/02/No.5 This question is about the alcohols A-F shown below. $$A$$ OH B OH C - (a) Which of the alcohols A-F are secondary alcohols? -[2] - (b) Complete a balanced equation for the complete combustion of alcohol C. $$CH_3CH_2CH(OH)CH_3 + \dots + \dots + \dots + \dots$$ [1] - (c) What is the systematic name of alcohol B? -[1] - (d) Alcohol A can be prepared by the alkaline hydrolysis of the bromoalkane, (CH₃)₂CHCH₂CH₂Br. The hydrolysis with aqueous NaOH is shown in **equation 5.1**. $$(CH_3)_2 CHCH_2 CH_2 Br + NaOH \longrightarrow (CH_3)_2 CHCH_2 CH_2 OH + NaBr$$ equation 5.1 alcohol A A student gently heats a mixture of (CH₃)₂CHCH₂CH₂Br and NaOH(aq) for 25 minutes. (i) Calculate the atom economy for the preparation of alcohol A in equation 5.1. (ii) Outline the mechanism for the alkaline hydrolysis of (CH₃)₂CHCH₂CH₂Br. The structure of (CH₃)₂CHCH₂CH₂Br has been provided. Show curly arrows, relevant lone pairs and dipoles, and the products. $$(\operatorname{CH}_3)_2\operatorname{CHCH}_2 - - \operatorname{C} - - \operatorname{Br} - - - \operatorname{H}$$ | | | | [3] | |----|---------------|--|--------| | | (iii) | Name this type of mechanism. | | | | | | [1] | | e) | | e student decides to prepare alcohol A using the same method as in (d) but using the same (CH_3) ₂ CHCH_2 CH ₂ Cl instead of the bromoalkane, (CH_3) ₂ CHCH ₂ CH ₂ Br. | ig the | | | Stat
diffe | te and explain how the rates of hydrolysis of the chloroalkane and the bromoalkane er. | would | [2] | (f)* The structures of A-F are repeated below. Compound X is one of the alcohols A-F. A student refluxes compound \mathbf{X} with acidified potassium dichromate(VI) as an oxidising agent. A pure sample of the organic product \mathbf{Y} is obtained from the resulting mixture. The mass spectrum and IR spectrum of Y are shown below. ### Mass spectrum of Y #### IR spectrum of Y # ocrsolvedexampapers.co.uk | Using this information, identify compound ${\bf X}$ and product ${\bf Y}$, and write an equation for the formation of product ${\bf Y}$ from compound ${\bf X}$. You may use [O] to represent the oxidising agent. | | | | | | | |--|--|--|--|--|--|--| | In your answer you should make clear how your conclusions are linked to the evidence. [6] | Additional annual if annuind | | | | | | | | Additional answer space if required |