<u>Algebra – 2021/20 GCSE Mathematics Higher</u>

1. Nov/2021/Paper_J560/04/No.10

Alex, Blake and Charlie play a computer game.

Alex goes first and scores *n* points.

- Blake scores 8 points less than 3 times the number of points scored by Alex.
- Charlie scores 25 more points than Blake.
- The three people score a total of 618 points.

Work out how many points they each score.

You must show your working.

Alex =	
Blake =	
Charlie =	

2. Nov/2021/Paper_J560/04/No.12

(a) The region R is shown on this grid.

Region **R** is defined by four inequalities. One of the inequalities is $x \ge 0$.

Use the symbols \leq and \geq to complete the other three inequalities.

$$x \ge 0$$
 $y = \frac{1}{2}x$
 $x + 2y = 24$
 $y = x + 6$ [2]

(b) The inequality $x \ge 0$ is replaced by a new inequality. Region **R** is then a kite.

Write down the new inequality.

(b)[3]

	3.	Nov/2021	/Paper	J560	/ 04	/No.15
--	----	----------	--------	------	-------------	--------

Here are the first four terms of a quadratic sequence.

-1 3 13 29

The *n*th term is $an^2 + bn + c$.

Find the values of a, b and c.

4. Nov/2021/Paper_J560/04/No.20

Solve algebraically.

$$y = x + 3$$
$$(x-3)^2 + y^2 = 50$$

You must show your working.

$$x = \dots y = \dots y = \dots$$
 [5]

- **5.** Nov/2021/Paper_J560/05/No.7
 - (a) Solve the inequality.

$$4(x-3) < x$$

(a)[3]

(b) Show your answer to part (a) on the number line.

[2]

NOV/2021/Paper_J560/05/NO.20	6.	Nov/2021/Paper_	J560,	[/] 05/	No.20
--	----	-----------------	-------	------------------	-------

$$x^2 - 2y = 5$$
 and $4y + z = 7$.

Write *z* in terms of *x*. Give your answer in its simplest form.

.....[4]

ocrsolvedexampapers.co.uk

7.	Nov	/2021	/Paper	J560	/05	/No.22
1.	INOV	/ ZUZI,	/Paper	1200	/ U.S.	/ INO.Z2

n is a positive integer.

Prove that (2n+1)(n-3)(n+2) + 3n(n+7) is always even.

.....[6]

8	Nov/2021,	/Paner	1560/06	/No 3
U.	1404/2021/	rapei_	_1200/00	<i>יו</i> ואט.ט

Multiply out and simplify.

$$3(x+2)-(x-1)$$

 roi
 [4]

9. Nov/2021/Paper_J560/06/No.15

(a) Show that the equation $x^3 - 5x - 1 = 0$ has a solution between x = 2 and x = 3. [3]

(b) Find this solution correct to 1 decimal place. You must show your working.

10. Nov/2021/Paper_J560/06/No.16

The following kinematics formulas may be used in this question.

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

The initial velocity of a particle is $20 \,\mathrm{m/s}$. The acceleration of the particle is $-8 \,\mathrm{m/s^2}$. After t seconds, the particle has travelled $25 \,\mathrm{m}$.

(a) Show that
$$4t^2 - 20t + 25 = 0$$
.

(b) Solve
$$4t^2 - 20t + 25 = 0$$
.

[3]

ocrsolvedexampapers.co.uk

(c)	Show that the particle is stationary when it has travelled 25 m.
	[3]

ocrsolvedexampapers.co.uk

11. Nov/2021/Paper_J	560/06/No.18
----------------------	--------------

Rearrange this formula to make y the subject.

$$\frac{5y+2}{y} = \frac{3t-7}{2}$$

.....[5]

12.	Nov	/2020	/Paper_	J560	/04	/No.15
-----	-----	-------	---------	------	-----	--------

Here are two pieces of work.

For each one, describe the error made and give the complete correct solution.

(a)

Question:

Solve by factorisation.

$$3x^2 - 2x - 5 = 0$$

Solution:

$$(3x+5)(x-1)=0$$

Therefore x = -5/3 or x = 1

Error:

.....

Correct solution:

(b)

Question:

Solve, giving your answers correct to 3 significant figures.

$$2x^2 - 8x + 3 = 0$$

Solution:

$$x = -(-8) \pm \frac{\sqrt{(-8)^2 - 4 \times 2 \times 3}}{2 \times 2}$$

Therefore x = 6.42 or x = 9.58

Error:	 	 	 	

Correct solution:

13.	Nov/2020	/Paper	J560/04/	/No.17
-----	----------	--------	----------	--------

Expand and simplify.

$$(x+1)(x-1)(x+2)$$

.....[3]

14. Nov/2020/Paper_J560/04/No.20

Solve.

$$x^2 + y^2 = 34$$
$$y = x + 2$$

Show your working.

$$x = \dots y = \dots y = \dots [6]$$

15. Nov/2020/Paper_	J560/05	/No.2
---------------------	---------	-------

(a) Solve.

$$4x + 3 = 13$$

(b) Multiply out and simplify.

$$5(2x+3)+2(x-4)$$

16. Nov/2020/Paper_J560/05/No.15

Solve.

$$\frac{x}{x+6} = 5$$

17. Nov/2020/Paper_J560/06/No.2

Solve 3x + 4 < 19.

Show your solution on the number line.

[4]

18. Nov/2020/Paper_J560/06/No.11

Here are two functions.

(a) (i) Jo chooses a number, x.

She inputs x into each function.

The two outputs are equal.

Work out the value of x.

(a)(i)	$\chi =$	 [4]

(ii) Explain why there is no other input that gives two outputs that are equal.

(b) Here is function C.

Kai chooses values for p and q so that if he inputs **any** number into both function A and function C, he will **always** get two outputs that are equal.

Find the value of p and the value of q.

(b)
$$p = \dots q = \dots [3]$$

	2020/Paper_J560/ e is a sequence.							
3	3√5	15	15√5					
(a)	(a) Work out the next term.							
(b)	Find the <i>n</i> th term	n.		(a)	[1]			
				(b)	[3]			

20. Nov/2020/Paper_J560/06/No.21

Write as a single fraction in its simplest form.

$$\frac{x}{x+2} + \frac{x+1}{x-2} - \frac{6x}{x^2-4}$$

.....[6]