Algebra and Functions - 2021/20 GCE AS Mathematics A

1. Oct/2021/Paper_H230/01/No.3

The diagram shows the curve y = f(x), where f(x) is a cubic polynomial in x. This diagram is repeated in the Printed Answer Booklet.

(a) State the values of x for which
$$f(x) < \frac{1}{2}$$
, giving your answer in set notation. [3]

(b) On the diagram in the Printed Answer Booklet, draw the graph of
$$y = f(-x)$$
. [2]

(c) Explain how you can tell that f(x) cannot be expressed as the product of three real linear factors. [1]

	2.	Oct/2021,	/Paper	H230/	01/No.	6
--	----	-----------	--------	-------	--------	---

The power output, P watts, of a certain wind turbine is proportional to the cube of the wind speed $v \, \mathrm{ms}^{-1}$.

[3]

When v = 3.6, P = 50.

Determine the wind speed that will give a power output of 225 watts.

3. Oct/2021/Paper_H230/02/No.1

Given that (x-2) is a factor of $2x^3 + kx - 4$, find the value of the constant k. [2]

4. Oct/2021/Paper_H230/02/No.2

The diagram shows the line y = -2x + 4 and the curve $y = x^2 - 4$. The region R is the unshaded region together with its boundaries.

Write down the inequalities that define R.

[3]

5. Oct/2020/Paper_H230/01/No.5

The function f is defined by f(x) = (x+a)(x+3a)(x-b) where a and b are positive integers.

- (a) On the axes in the Printed Answer Booklet, sketch the curve y = f(x). [2]
- (b) On your sketch show, in terms of a and b, the coordinates of the points where the curve meets the axes. [2]

It is now given that a = 1 and b = 4.

(c) Find the total area enclosed between the curve y = f(x) and the x-axis. [4]

6. Oct/2020/Paper_H230/01/No.6

In this question you must show detailed reasoning.

- (a) Solve the inequality $x^2 + x 6 > 0$, giving your answer in set notation. [4]
- **(b)** Solve the equation $x^3 7x^{\frac{3}{2}} 8 = 0$. [4]
- (c) Find the exact solution of the equation $(3^x)^2 = 3 \times 2^x$. [5]

7. Oct/2020/Paper_H230/01/No.7

Determine the points of intersection of the curve $3xy + x^2 + 14 = 0$ and the line x + 2y = 4. [5]

ocrsolvedexampapers.co.uk

8. Oct/2020/Paper_H230/02/No.5

A curve has equation $y = a(x+b)^2 + c$, where a, b and c are constants. The curve has a stationary point at (-3, 2).

(a) State the values of b and c. [2]

When the curve is translated by $\binom{4}{0}$ the transformed curve passes through the point (3, -18).

(b) Determine the value of a. [3]

9. Oct/2020/Paper_H230/02/No.4

The cubic polynomial $6x^3 + kx^2 + 57x - 20$ is denoted by f(x). It is given that (2x-1) is a factor of f(x).

- (a) Use the factor theorem to show that k = -37. [2]
- (b) Using this value of k, factorise f(x) completely. [3]
- (c) (i) Hence find the three values of t satisfying the equation $6e^{-3t} 37e^{-2t} + 57e^{-t} 20 = 0$. [2]
 - (ii) Express the sum of the three values found in part (c)(i) as a single logarithm. [2]

ocrsolvedexampapers.co.uk

10. Oct/2020/Paper_H230/02/No	2/No.2	/02	H230	/Paper	/2020	Oct	10.
--------------------------------------	--------	-----	------	--------	-------	-----	-----

Two curves have equations $y = \ln x$ and $y = \frac{k}{x}$, where k is a positive constant.

- (a) Sketch the curves on a single diagram.
- (b) Explain how your diagram shows that the equation $x \ln x k = 0$ has exactly one real root. [2]

[3]

11. June/2019/Paper_H230/01/No.3(a)

In this question you must show detailed reasoning.

(a) The polynomial f(x) is defined by $f(x) = 2x^3 + 3x^2 - 8x + 3$.

(i) Show that
$$f(1) = 0$$
. [1]

(ii) Solve the equation f(x) = 0. [4]

12. June/2019/Paper_H230/02/No.1

In this question you must show detailed reasoning.

Solve the equation $x(3-\sqrt{5})=24$, giving your answer in the form $a+b\sqrt{5}$, where a and b are positive integers. [3]

13. June/2019/Paper_H230/02/No.3

(a) Sketch the curve
$$y = -\frac{1}{x^2}$$
. [1]

(b) The curve $y = -\frac{1}{x^2}$ is translated by 2 units in the positive x-direction.

State the equation of the curve after it has been translated. [2]

(c) The curve $y = -\frac{1}{x^2}$ is stretched parallel to the y-axis with scale factor $\frac{1}{2}$ and, as a result, the point $(\frac{1}{2}, -4)$ on the curve is transformed to the point P.

State the coordinates of P. [2]

ocrsolvedexampapers.co.uk

14. June/2019/Paper_H230/02/No.8

- (a) Show that the equation $2 \log_2 x = \log_2(kx-1) + 3$, where k is a constant, can be expressed in the form $x^2 8kx + 8 = 0$. [4]
- (b) Given that the equation $2 \log_2 x = \log_2(kx 1) + 3$ has only one real root, find the value of this root. [4]