Amount of substance - 2021/20 GCE AS Chemistry A

1	Nov/2021/Paper	H032/01/No 5

Which gas sample has the greatest mass at RTP?

- A $50 \,\mathrm{cm}^3$ of Ar(g)
- **B** $100 \, \text{cm}^3 \, \text{of} \, \text{O}_2(\text{g})$
- **C** $150 \, \text{cm}^3 \text{ of N}_2(g)$
- **D** 200 cm³ of Ne(g)

Your answer	[1]
	1.1

2. Nov/2021/Paper_H032/01/No.6

A student mixes $250.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ KOH with $750.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ Ca(OH)₂. What is the OH⁻ concentration, in mol dm⁻³, in the resulting mixture?

- A 0.0250
- **B** 0.100
- C 0.150
- **D** 0.175

Your answer [1]

3. Nov/2021/Paper_H032/01/No.25
--

(b) A gas cylinder has a gas volume of $9.39\,\mathrm{dm^3}$. The gas cylinder holds $1.69\,\mathrm{kg}$ of a gas at a pressure of $1.37\times10^7\,\mathrm{Pa}$ at $20\,^\circ\mathrm{C}$.

Determine the molar mass and possible identity of the gas.

molar mass =	 $gmol^{-1}$
identity of gas =	 [5]
	[၁]

_		_	_			
4.	Nov.	/2020	/Paper	H032	/01	/No.8

The unbalanced equation for the reaction of copper with concentrated nitric acid is shown below.

......Cu + $HNO_3 \rightarrowCu(NO_3)_2 +NO_2 +H_2O$

What is the number of moles of HNO₃ that react with 1 mole of Cu?

- A 2
- **B** 3
- C 4
- **D** 6

Your answer [1]

5. Nov/2020/Paper_H032/01/No.9

 $2.0\,\mathrm{dm^3}$ of $\mathrm{C}l_2$ gas reacts with $2.0\,\mathrm{dm^3}$ of $\mathrm{C}l\mathrm{F_3}$ gas to form $6.0\,\mathrm{dm^3}$ of a gaseous compound. The reaction has 100% atom economy and all volumes are measured at the same temperature and pressure.

What is the molecular formula of the compound formed?

- A C1F
- B Cl_2F_3
- C Cl_3F_2
- D Cl_3F_3

Your answer [1]

6. Nov/2020/Paper_H032/01/No.10

Which sample contains the greatest number of molecules?

- A 1g of methanol, CH₃OH
- B 2g of nitrogen dioxide, NO₂
- C 3g of phosphorus, P₄
- **D** 4g of iodine, I_2

Your answer [1]

ocrsolvedexampapers.co.uk

7	Nov	/2020	/Paner	H032	/01	/No.22	(c)
	INOV	, 2020	/I apci	11032	/ O ±	/ 140.221	· •

(c) Bromine reacts with fluorine to form compound A.

Compound A is a liquid at room temperature and pressure but can easily be vaporised.

When vaporised, $0.428 \, \mathrm{g}$ of **A** produces $76.0 \, \mathrm{cm}^3$ of gas at $1.00 \times 10^5 \, \mathrm{Pa}$ and $100 \, ^{\circ}\mathrm{C}$.

Determine the molar mass and molecular formula of compound A.

molar mass of
$$A =$$
 gmol⁻¹ molecular formula of $A =$ [5]

8. Nov/2020/Paper_H032/02/No.1(b)

(b) A student carries out an experiment to determine the enthalpy change of combustion of cyclohexane, C₆H₁₂, using the apparatus shown in the diagram.

In the experiment, $0.525\,g$ of cyclohexane are burnt, and the temperature of the $200\,cm^3$ of water changes from $21.0\,^{\circ}\text{C}$ to $41.0\,^{\circ}\text{C}$.

Calculate the enthalpy change of combustion, $\Delta_c H$, of cyclohexane in kJ mol⁻¹.

Give your answer to 3 significant figures.

 $\Delta_{\rm c} H = \dots k J \, {\rm mol}^{-1} \, [4]$