Astrophysics and cosmology – 2021/20 GCE Physics A Component 01

1. Nov/2021/Paper_H556_01/No.5

A spectral line corresponds to a wavelength λ_1 in the laboratory.

The same spectral line observed in the spectrum of a receding galaxy corresponds to a wavelength λ_2 .

The distance of the galaxy from the Earth is d. The speed of light in a vacuum is c.

What is the correct expression for the Hubble constant H_0 ?

- $\mathbf{A} \quad H_0 \approx \frac{c(\lambda_2 \lambda_1)}{d\lambda_1}$
- $\mathbf{B} \quad H_0 \approx \frac{c\lambda_1}{d(\lambda_2 \lambda_1)}$
- $\mathbf{C} \quad H_0 \approx \frac{c\lambda_2}{d\lambda_1}$
- $\mathbf{D} \quad H_0 \approx \frac{c\lambda_1}{d\lambda_2}$

Your answer		[1]
-------------	--	-----

2. Nov/2021/Paper_H556_01/No.15

The parallax angle for a star is 0.015 seconds of arc.

What is the distance in parsecs (pc) of the star from the Earth?

- **A** 67 pc
- **B** 133 pc
- **C** 220 pc
- **D** $2.1 \times 10^{18} \, \text{pc}$

Your answer [1]

3. Nov/2021/Paper_H556_01/No.23

Algol is a triple-star system, with stars Aa1, Aa2 and Aa3 orbiting each other. This triple-star is 90 light-years from the Earth.

- (a) Here is some data on the star Aa1.
 - radius = $(1.90 \pm 0.14) \times 10^9$ m
 - mass = $(6.31 \pm 0.42) \times 10^{30}$ kg.

Calculate the gravitational field strength g at the surface of Aa1 to 3 significant figures. Include the absolute uncertainty in your answer. Assume that the other stars of the system exert negligible gravitational force on Aa1.

$$g = \dots + \text{N kg}^{-1}$$
 [4]

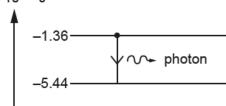
(b) The table shows some data about the three stars of Algol.

Star	Luminosity of star / L_{\odot}	Surface temperature of star / K
Aa1	182	13000
Aa2	6.92	4500
Aa3	10.0	7500

The luminosity of each star is in terms of the solar luminosity L_{\odot} .

(i)	Define the luminosity of a star.	
		[1

(ii)	Use Stefan's law to determine the ratio	radius of star Aa2
	Use Stefan's law to determine the ratio	radius of star Aa3


ratio =[2]

(111)	at the peak intensity of the emitted electromagnetic radiation.
	[2]
(iv)	Suggest how an astronomer using just an optical telescope can deduce that the three stars of Algol have different surface temperatures.
	[1]
(v)	The light from each star passing through a diffraction grating shows an absorption line spectrum.
	Explain how a specific absorption line is produced in this type of spectrum in terms of photons and electrons .
	[3]
The	Aa1 star could evolve into a black hole.
Stat	e two ways in which the black hole would differ from the Aa1 star.
1	
2	
	[2]
	(iv) The Stat 1 2

4. Nov/2020/Paper H556 01/No.6

The diagram below shows two energy levels for the electron in the hydrogen atom.

energy/ 10^{-19} J

The electron makes the transition shown by the arrow.

What is the wavelength of the photon emitted?

- A 293 nm
- **B** 366 nm
- C 488 nm
- **D** 1460 nm

Your answer

[1]

5. Nov/2020/Paper_H556_01/No.7

Recent analysis of the data collected from the Hubble and Gaia telescopes gave the Hubble constant a value of 73.5 km s⁻¹ Mpc⁻¹.

What is this value, written to 2 significant figures, in s⁻¹?

- A $2.4 \times 10^{-21} \,\mathrm{s}^{-1}$
- **B** $2.4 \times 10^{-18} \,\mathrm{s}^{-1}$
- C $2.4 \times 10^{-12} \text{s}^{-1}$
- **D** $2.4 \times 10^{21} \, \text{s}^{-1}$

Your answer

[1]

6	Nov	/2020	/Paper_	H556	01	/No c
Ο.	INOV	/ 2020	/ Fapei_	ַטככח	_U1	/ 140.5

Laser light of wavelength of 640 nm is incident normally at a diffraction grating. The separation between adjacent lines (slits) is 3.3×10^{-6} m.

What is the total number of bright spots that can be observed in the diffraction pattern?

- **A** 5
- **B** 6
- C 10
- D 11

Your answer [1]

7. Nov/2020/Paper H556 01/No.11

In astronomy, distance can be measured in different units.

Which one of the following distances is the largest?

- **A** 4.22×10^{16} m
- **B** 1.91 pc
- **C** 3.42 ly
- **D** 593AU

Your answer [1]

(a)	Our Sun will eventually become a red giant.
	Describe and explain the next stages of evolution of our Sun.
	[4

(b) Rigel is a blue giant star in the constellation of Orion. The table below shows some data about Rigel and about our Sun.

	Rigel	Sun
Surface temperature/K		5.8 × 10 ³
Luminosity/W	4.62 × 10 ³¹	3.85 × 10 ²⁶
Wavelength of emitted light at peak intensity/nm	240	500

(i) Show that the surface temperature of Rigel is $12\,000\,\mathrm{K}$.

(ii) Calculate the radius of Rigel.

	- author
	radius = m [2]
(c)	An astronomer claims to have discovered a white dwarf with a mass twice that of our Sun.
	Suggest why this claim must be incorrect.
	[1]

8.	Nov/2020/Pa	per H556	03/No.3

This question is about the Sun and its radiation.

- (a) (i) Use the data below to show that the luminosity of the Sun is about $4 \times 10^{26} \, \text{W}$.
 - radius of Sun = 7.0 × 10⁸ m
 - surface temperature of Sun = 5800 K

[1]

(ii) Sirius, the brightest star in the night sky, has a luminosity 25 times greater than that of the Sun. It has diameter 1.7 times greater than that of the Sun.

Calculate the surface temperature T of Sirius.

- *(b) A student attends a lecture about the Sun and makes the following notes.
 - 1. The Sun loses more than 4×10^9 kg of its mass every second to maintain its luminosity.
 - 2. Treating hydrogen nuclei (protons) as an ideal gas, a temperature of 10¹⁰ K provides a kinetic energy of about 1 MeV, which is necessary for fusion.
 - 3. However, the Sun's core temperature is only 10⁷ K, so the chance of protons fusing on collision is very small. This explains why the Sun has such a long lifetime.

You should include relevant formulae, but no numbers or calculations are required.	[6]