Capacitors - 2021/20 GCE Physics A Component 02

1. Nov/2021/Paper_H556_02/No.6

A student is modelling the decay of charge for a capacitor discharging through a resistor using the equation $\frac{\Delta Q}{\Delta t}$ = -0.2Q.

The student decides to use Δt = 0.5 s.

The initial charge on the capacitor is $1000\,\mu\text{C}$.

Part of the modelling spreadsheet from the student is shown below.

t/s	Charge Q left on capacitor at time t/μC	Charge ∆Q decaying in the next 0.5s/μC
0	1000	100
0.5	900	
1.0		
1.5		

What is the value of Q in μ C at t = 1.5s?

- **A** 700
- **B** 720
- **C** 729
- **D** 800

Your answer			1	[1]
-------------	--	--	---	-----

2. Nov/2021/Paper_H556_02/No.20

(a) The diagram below shows a circuit to charge a capacitor.

The electromotive force (e.m.f.) E of the cell is 1.48 V and it has negligible internal resistance. The resistance of the resistor is $120\,\mathrm{k}\Omega$ and the capacitance of the capacitor is $2000\,\mu\text{F}$. At time t=0 the capacitor is uncharged.

The switch is closed at time t = 0.

Calculate the time t when the potential difference across the capacitor is 1.00 V.

t = S 4	t =		s	[4	1
-----------	-----	--	---	----	---

(b) A capacitor of capacitance C is connected across a strip of conductive paper.

The switch is moved from X to Y, and the time t for the potential difference across the capacitor to halve is measured.

The time *t* is given by the expression

$$t = (Ck \ln 2) \times L$$

where k is the resistance of the conductive paper per unit length and L is the length of the conductive paper.

The value of C is 1.2×10^{-3} F.

In an experiment, *L* is changed and *t* measured.

The data points are plotted on a *t* against *L* grid as shown below.

ocrsolvedexampapers.co.uk

Draw a straight line of best fit through the data points, and use the gradient of this line to determine k.

3. Nov/2020/Paper_H556_02/No.7

The diagram below shows a circuit used to charge a capacitor.

The power supply has electromotive force (e.m.f.) 10 V and negligible internal resistance.

The capacitor has capacitance C and the resistor has resistance R.

The switch is closed at time t = 0.

The table below shows potential difference V across the resistor at various values of time t.

V/V	10	6.3	5.0	3.7
t/s	0	2.8	4.2	6.0

What is the product $C \times R$ for this circuit?

- **A** 0s
- **B** 2.8s
- C 4.2s
- **D** 6.0s

Your answer

[1]

4. Nov/2020/Paper_H556_02/No.8

A capacitor discharges through a resistor.

At time t = 0 the potential difference V across the capacitor is V_0 .

At time t = 2.0 s, $V = 0.90 V_0$.

Which statement is **not** correct?

- **A** At t = 4.0 s, $V = 0.81 V_0$.
- **B** The capacitor is fully discharged after t = 10 s.
- **C** The potential difference across the resistor is the same as that for the capacitor.
- **D** The potential difference V decreases exponentially with time t.

Your answer

[1]

5. Nov/2020/Paper_H556_03/No.2

The diagram below shows a circuit containing two capacitors which are both initially uncharged. The battery has e.m.f. *E* and negligible internal resistance.

The switch **S** is first moved to position **A** until the capacitor of capacitance C_0 is fully charged.

The switch ${\bf S}$ is then moved to position ${\bf B}$. The initial charge stored by the capacitor of capacitance C_0 is shared between the two capacitors. The final reading on the voltmeter is V.

(a) Show that $V = \frac{C_0}{C + C_0} E$.

[2]

(b) A student wants to determine the values of E and C_0 by repeating the experiment above and measuring the potential difference (p.d.) V for a selection of capacitors of capacitance C.

The student decides to plot a graph of $\frac{1}{V}$ against C.

(i) Use the expression in (a) to show that the graph should be a straight line of gradient $\frac{1}{C_0E}$ and y-intercept $\frac{1}{E}$.

(ii) The data points, error bars and the line of best fit drawn by the student are shown in the graph below.

The gradient of the line of best fit is $51 \text{ V}^{-1} \text{ F}^{-1}$. The value of *E* is 9.1 V.

Determine the value of C_0 in millifarads (mF). Write your answer to 2 significant figures.

ocrsolvedexampapers.co.uk

	(iii)	Draw on the graph a straight line of worst fit.
		Use this line to determine the absolute uncertainty in your value of C_0 . Write your answer to an appropriate number of significant figures.
		absolute uncertainty = mF [4]
(c)		absolute uncertainty =
(c)	and	e experiment is repeated with a resistor of resistance $10k\Omega$ placed in series between ${f S}$
(c)	and	e experiment is repeated with a resistor of resistance $10\mathrm{k}\Omega$ placed in series between S the capacitor of capacitance C_0 .
(c)	and	e experiment is repeated with a resistor of resistance $10\mathrm{k}\Omega$ placed in series between S the capacitor of capacitance C_0 . the with a reason what effect, if any, this would have on the experiment.
(c)	Star	e experiment is repeated with a resistor of resistance $10\mathrm{k}\Omega$ placed in series between $\mathbf S$ the capacitor of capacitance C_0 . the with a reason what effect, if any, this would have on the experiment.
(c)	Star	e experiment is repeated with a resistor of resistance $10\mathrm{k}\Omega$ placed in series between $\mathbf S$ the capacitor of capacitance C_0 . the with a reason what effect, if any, this would have on the experiment.
(c)	Star	e experiment is repeated with a resistor of resistance $10\mathrm{k}\Omega$ placed in series between $\mathbf S$ the capacitor of capacitance C_0 . the with a reason what effect, if any, this would have on the experiment.
(c)	Star	e experiment is repeated with a resistor of resistance $10\mathrm{k}\Omega$ placed in series between $\mathbf S$ the capacitor of capacitance C_0 . the with a reason what effect, if any, this would have on the experiment.
(c)	Star	e experiment is repeated with a resistor of resistance $10\mathrm{k}\Omega$ placed in series between $\mathbf S$ the capacitor of capacitance C_0 . the with a reason what effect, if any, this would have on the experiment.