ocrsolvedexampapers.co.uk

Reaction rates and equilibrium (qualitative) – 2021/20 GCE AS Chemistry A

1.		2021/Paper_H032/01/No.12 ich statement about dynamic equilibrium is not correct?		
	Α	A catalyst increases the rate of both forward and reverse reactions by the same amount.		
	В	Dynamic equilibrium exists only in a closed system.		
	С	The concentrations of the reactants and products are equal.		
	D	The rate of the forward reaction is equal to the rate of the reverse reaction.		
	You	answer	[1]	
2.		'2021/Paper_H032/01/No.22(b)		
	(b)	 Explain how le Chatelier's principle can be used to predict the conditions of pressure and temperature for a maximum equilibrium yield of hydrogen in Equilibrium 22.1. 		
			[4]	

Nov/2020/Paper_H032/01/No.12 3.

Hydrogen gas can be produced as shown below.

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$
 $\Delta H = +206 \text{ kJ mol}^{-1}$

$$\Delta H = +206 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Which conditions produce the greatest equilibrium yield of hydrogen?

- Low temperature and high pressure
- В Low temperature and low pressure
- High temperature and high pressure С
- D High temperature and low pressure

Your answer	

[1]

4. Nov/2020/Paper_H032/01/No.13

The reversible reaction below is in equilibrium.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

The equilibrium concentrations are shown in the table.

Substance	SO ₂ (g)	O ₂ (g)	SO ₃ (g)
Equilibrium concentration / mol dm ⁻³	4.00	2.40	1.44

What is the numerical value of K_c ?

- 0.0375
- 0.0540
- С 0.150
- 18.5 D

Your answer [1]

5.	Nov/202	l/Paper	H032	/02	/No.5	(a	b)	١
U .	140 0/ 202	L/I upci	_11032	, 02	/ 140.5	<u>ر</u> س_		,

Methanol, CH₃OH, is manufactured by the reaction of carbon monoxide, CO, with hydrogen, H₂.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H = -91 \text{ kJ mol}^{-1}$

(a) Write the expression for the equilibrium constant, $K_{\rm c}$, for this equilibrium.

[1]

(b) A chemist mixes CO and H₂ in a container. The mixture is heated to 200 °C and left to reach equilibrium.

The equilibrium concentrations of CO and ${\rm H_2}$ are shown in the table.

Compound	Equilibrium concentration / mol dm ⁻³
CO(g)	0.57
H ₂ (g)	0.40

The numerical value of $K_{\rm c}$ for this equilibrium is 15.4.

(i) Calculate the equilibrium concentration of CH₃OH(g).

ocrsolvedexampapers.co.uk

(c) The industrial manufacture of methanol has used a copper-based catalyst.

		gal	emists have recently developed a new method for making methanol that uses a nickel- lium catalyst. This allows methanol to be produced at a lower temperature than the old thod.			
		Su	ggest two reasons why using a lower temperature is beneficial to the environment.			
		1				
		2				
			[2]			
6.			/Paper_H032/02/No.4(b) osyl chloride, NOC l , dissociates into nitrogen monoxide and chlorine as in the equilibriun bw.			
		$2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$ $\Delta H = +77.0 \text{ kJ mol}^{-1}$				
Nitrosyl chloride is added to a container, which is then sealed. The container is heated to 400 °C, and equilibrium is allowed to be reached.						
		(i)	Write the expression for the equilibrium constant, $K_{\rm c}$, for this equilibrium.			
			[1			
		(ii)	In the equilibrium mixture at 400 °C, the equilibrium concentration of ${\rm C}l_2({\rm g})$ is found to be 0.17 mol dm ⁻³ .			
			The student calculates that the equilibrium concentration of $NO(g)$ is $0.34moldm^{-3}$.			
			Explain how the student obtained this value for [NO(g)].			
			[1]			

ocrsolvedexampapers.co.uk

(iii)	At 400 °C, $K_c = 0.015 \text{moldm}^{-3}$.
	Calculate the equilibrium concentration of NOC1(g) at 400 °C.
	equilibrium concentration of NOC1(g) = mol dm ⁻³ [2
(iv)	The temperature of the equilibrium mixture is increased above 400 °C while keeping the pressure constant.
	State and explain the effect on the equilibrium concentration of nitrogen monoxide NO(g), with these new conditions.
	[2