
Chemicals of the natural environment - 2021/20 GCSE 21st Chemistry B

- 1. Nov/2021/Paper_J258/01/No.5(e)
 - (c) Fig. 5.2 shows a model of an ethanol molecule and a methane molecule:

Ethanol Methane

Fig. 5.2

(i)	The formula of methane is CH ₄ .		
	What is the formula of ethanol?		
	Use Fig. 5.2 to help you.		
			[1]
(ii)	Which two statements do the models in Fig	. 5.2 accurately show?	
	Tick (✓) two boxes.		
	The number of electrons in each atom.		
	The number of atoms in each molecule.		
	The 3D shape of each molecule.		
	The actual size of the atoms.		
			[2]

2. Nov/2021/Paper_J258/01/No.7

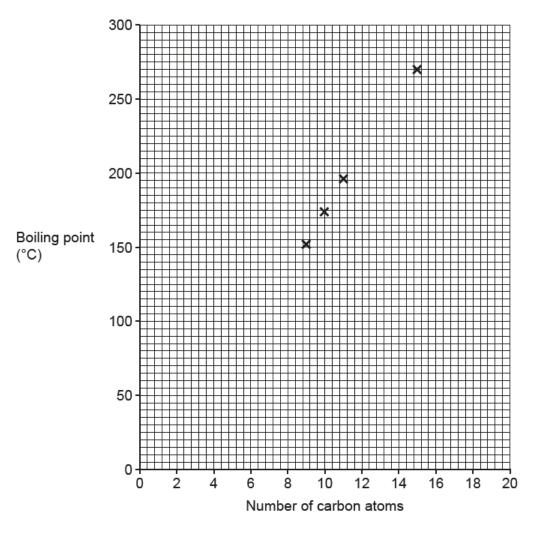
Crude oil contains many compounds that are used as fuels.

The table shows some of these compounds:

(a) Which word describes crude oil?

Name	Formula	Relative formula mass	Boiling point (°C)
Methane	CH ₄		-162
Butane	C ₄ H ₁₀	58	–1
Benzene	C ₆ H ₆	78	80
Octane C ₈ H ₁₈		114	126
Hexadecane	C ₁₆ H ₃₄	226	287

Put a ring around the correct answer.						
	Che	emical	Compound	Element	Mixture	[1]
(b)	(i)	Name the two	o compounds in th	e table that are ga	ases at 25°C.	
		Compound 1				
		Compound 2				[1]
	(ii)	. ,	answer to (b)(i).			ניז
						[1]
(c)	Calo		tive formula mass			
	Use	the Data She	et.			
			Relative	formula mass =		[1]
(d)		cribe the relatine table.	ionship between re	elative formula ma	ss and boiling poin	t for the compounds
						[1]


(e) Benzene has six carbon atoms but is not an alkane.

Alkanes have the general formula C_nH_{2n+2} .

Give the formula of the alkane with six carbon atoms.

.....[1]

(f) The graph shows the boiling point and the number of carbon atoms for some alkanes.

(i) Hexadecane has 16 carbon atoms. The boiling point of hexadecane is 287 °C.

Plot the point for hexadecane on the graph.

[1]

(ii) Draw a line of best fit.

[1]

(iii) Estimate the boiling point of the alkane with the formula $\mathrm{C}_{12}\mathrm{H}_{26}.$

Show your working on the graph.

Boiling point = °C [1]

(g)	Frac	ctional distillation is used to separate the compounds in crude oil.	
	Whi	ch property is used to separate compounds in fractional distillation?	
	Tick	x (✔) one box.	
	Boil	ing point	
	Den	nsity	
	For	mula	
	Mel	ting point	[1]
(h)	(i)	The formula for butane is C_4H_{10} .	
		Draw the displayed formula for butane.	
			[41
	(ii)	What is the simplest ratio of carbon atoms to hydrogen atoms in butane?	[1]
		Ratio of carbon atoms : hydrogen atoms =: :	[1]
	(iii)	State the empirical formula of butane.	
		Empirical formula =	[1]

3. Nov/2021/Paper_J258/02/No.3

Layla heats a small piece of sodium. She then puts it in a jar of chlorine gas, as shown in Fig. 2.1.

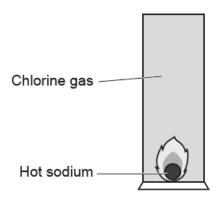
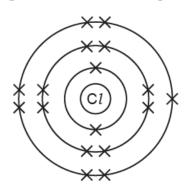


Fig. 2.1

Layla observes that the sodium burns quickly with a bright flame and forms a white solid. The white solid is sodium chloride.

1)	Lay	ria repeats the experiment. This time she uses lithium.									
	(i)	What is the name of the salt that forms when lithium reacts with chlorine?									
				[1]							
	(ii)	How would Layla's observations be different when she uses lithium?									
		Put a ring around the	correct answer.								
		Reaction is slower	Reaction is faster	Reaction takes same amount of time							
	(iii) Give one reason for your answer to (a)(ii).										


(b) Layla does experiments with other Group 1 and Group 7 elements.

Complete the table of information about each element.

Element	Group number	Solid, liquid or gas at room temperature?	Colour at room temperature
Sodium	1	Solid	Silver
Chlorine	7		
Potassium			
lodine		Solid	

[3]

(c) Fig. 2.2 shows the arrangement of electrons in a chlorine atom.

Chlorine (atomic number 17)

Fig. 2.2

(i) Complete Fig. 2.3 to show the arrangement of electrons in a sodium atom.

Sodium (atomic number 11)

Fig. 2.3

[2]

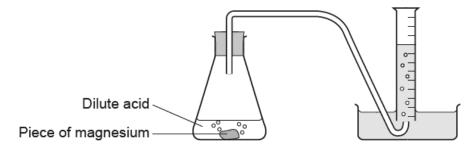
(ii) Chlorine forms chloride ions, C1-.

Complete the sentence to explain why chloride ions have a charge of -1.

Use the words.

You can use each word once, more than once, or not at all.

eight	gain	lose	seven	two
Chlorine has .		electro	ons in the outer	shell, so it needs to
	one e	lectron to give	a full outer she	ell.


4. Nov/2021/Paper_J258/02/No.7

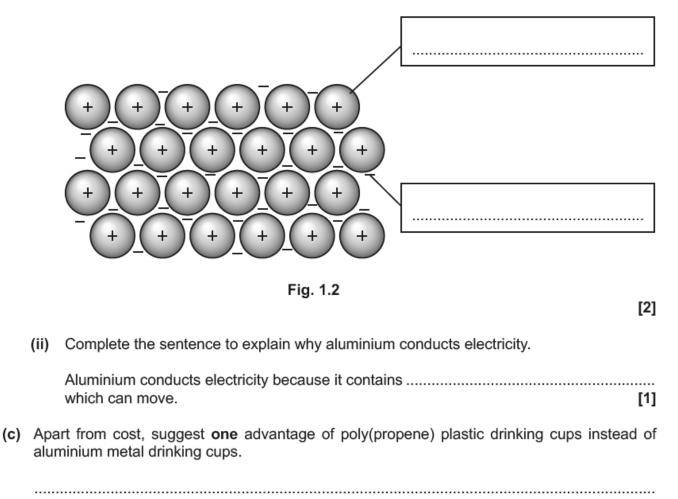
Kareem finds this table of information about the reactivity of some metals with dilute acids.

Metal	Reactivity with dilute acids
Copper	Does not react
Zinc	
Magnesium	Metals become more reactive
Calcium	1

He does some experiments to show that the reactivity of these metals is correct.

He uses the apparatus shown in the diagram.

Kareem finds that it takes $45 \ \text{seconds}$ for magnesium to make $10 \ \text{cm}^3$ gas.


Describe how Kareem should use the same apparatus to do experiments to show that the reactivity

of the metals shown in the table is correct.

Include in your answer what he should control and what results he should expect.

.....[6]

- **5.** Nov/2020/Paper_J258/01/No.1(b, c)
 - (b) Aluminium has a metallic structure.
 - (i) Label the metallic structure shown in Fig. 1.2 by completing the boxes.

6.		/2020/Paper_J258/01/No.3 nene is a gas.								
	The	formula o	of ethene is	C_2H_4 .						
	(a)	Name the	Name the two elements in ethene.							
		1	1							
		2								[1]
	(b)	What is t	he empirio	al formula of	ethene	?				
		Put a ring	g around th	ne correct ans	wer.					
		CH CH ₂ C ₂ H ₂ C ₂ H ₄								[1]
	(c)	Which homologous series does ethene belong to?								
		Put a ring	Put a ring around the correct answer.							
		acids	ald	cohols	all	canes	alkene	s		[1]
	(d)	Ethene re	eacts with l	oromine water	r to ma	ke dibromoeth	nane.			
		C_2H_4 +	$Br_2 \rightarrow C_2$	H ₄ Br ₂						
		Complete	e the sente	nces below to	descri	be this reaction	on.			
		Use word	ds from the	list.						
		Each word can be used once, more than once or not at all.								
		addition colourless single								
		displace	displacement oxidised double							
		This type	This type of reaction is called							
		The bron	nine water	becomes						

[3]

Ethene reacts because it contains a bond.

7. Nov/2020/Paper_J258/02/No.10

Sundip passes electricity through solutions of some ionic compounds and finds out what products are formed at the positive and negative electrodes.

(a) Here are Sundip's results.

Solution	Product at positive electrode	Product at negative electrode
concentrated sodium chloride	chlorine gas	hydrogen gas
dilute sodium chloride	oxygen gas	hydrogen gas
dilute copper chloride	chlorine gas	copper metal
concentrated copper sulfate	oxygen gas	copper metal
concentrated copper chloride		
dilute sodium sulfate		

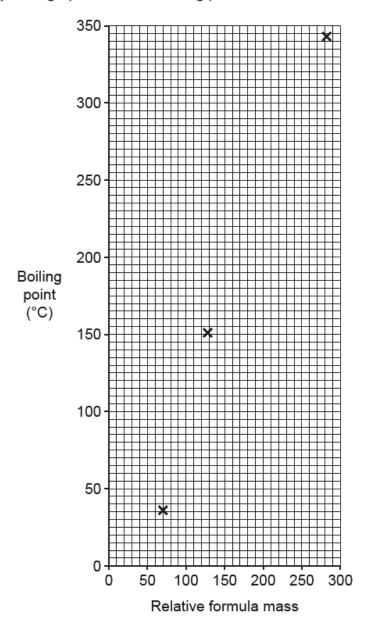
- (i) Complete the table by predicting the products formed at each electrode when electricity is passed through concentrated copper chloride and dilute sodium sulfate. [3]
- (ii) Sundip uses tests to identify the gases formed in her experiments.

Draw lines to connect each gas to its correct test and result.

Gas	Test and result
	relights a glowing splint
chlorine	makes a lighted splint go 'pop'
oxygen	turns lime water milky
hydrogen	turns blue litmus red and then bleaches it
	turns red litmus blue and then bleaches it

[2]

	(iii)		in why, at the negative electrode: copper metal is formed when electricity is passed through dilute copper chlor out cydrogen gas is formed when electricity is passed through dilute sodium chloric	de.
(b)		is a	st of apparatus Sundip uses to pass electricity through the solution of dilute soc	. [2]
	Date		electrodes leads and clips a battery a beaker the solution of sodium chloride.	
			belled diagram in the box to show how Sundip sets up her experiment to perhaps the solution of dilute sodium chloride.	oass
				[2]


8. Nov/2021/Paper_J258/03/No.5

Crude oil contains many compounds that are used as fuels. The table shows information about some of these compounds:

Name	Formula	Relative formula mass	Melting point (°C)	Boiling point (°C)	
Methane	CH ₄	16	-182	-162	
Pentane	C ₅ H ₁₀	70	-130	36	
Nonane	Nonane C ₉ H ₂₀ 128		-54	151	
Dodecane	Dodecane C ₁₂ H ₂₆ 170		-10		
Hexadecane	C ₁₆ H ₃₄	226	18	287	
Icosane	C ₂₀ H ₄₂	282	37	343	
Benzene	C ₆ H ₆	78	6	80	

(a)	All ti	ie compounds in the table are alkanes, except benzene.
	Expl	ain how the formula of benzene shows it is not an alkane.
		[2]
(b)	(i)	Name one compound from the table which is a solid at 25 °C.
		[1]
	(ii)	Give one reason for your answer to (b)(i) .
		[1]
(c)	Desc	cribe the relationship between melting point and boiling point for the alkanes in the table.
		[1]

(d) The graph shows the boiling point and relative formula mass for some alkanes.

(i) Hexadecane, C₁₆H₃₄, boils at 287 °C.Plot the point for hexadecane on the graph.

Use data from the table.

[1]

(ii) Draw a line of best fit.

[1]

(iii) Estimate the boiling point of dodecane, C₁₂H₂₆.

Show your working on the graph.

Boiling point =°C [1]

(e)	Fractional distillation is used to separate the compounds in crude oil.							
	Wh	hich property of the compounds is used to separate them?						
		[1]						
(f)	(i)	Describe how carbon monoxide forms when alkanes burn in vehicle engines.						
	<i>(</i> 11)	[1]						
	(ii)	Why is it important to decrease the amount of carbon monoxide entering the air?						
		[1]						
	(iii)	The formula of carbon monoxide is CO. One mole of carbon monoxide contains 6.02×10^{23} molecules.						
		Calculate the mass of one carbon monoxide molecule.						
		Use the Data Sheet and the relationship: number of moles = $\frac{\text{mass of substance (g)}}{\text{relative formula mass (g)}}$						
		Give your answer to 3 significant figures.						
		Mass of one carbon monoxide molecule = g [3]						
(g)	Nitr	ogen oxides are also formed in vehicle engines.						
	Des	scribe how nitrogen oxides form in vehicle engines.						

9. Nov/2021/Paper_J258/03/No.6(c)

(c) Fig. 6.2 shows a model of a molecule of butane:

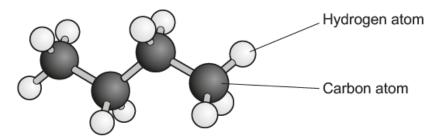
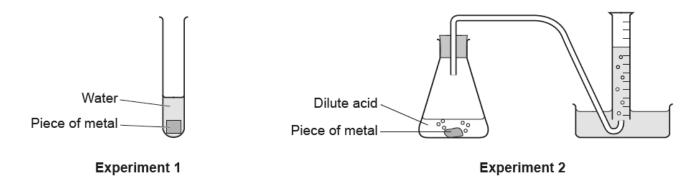



Fig. 6.2

(i)	Which two features are shown by the model in Fig. 6.2 ?	
	Tick (✓) two boxes.	
	The number of electrons in the atoms.	
	The 3D shape of the molecule.	
	The number of atoms in the molecule.	
	The actual size of the atoms.	
	The length of the bonds between the atoms.	
(ii)	State the empirical formula of butane.	[2]
. ,		[1]

10. Nov/2021/Paper_J258/04/No.7

Kareem investigates the order of reactivity of five metals, aluminium, magnesium, calcium, copper and zinc. He does two experiments, as shown.

In **experiment 1** he puts small pieces of each of the metals into water. He observes the metals over five minutes.

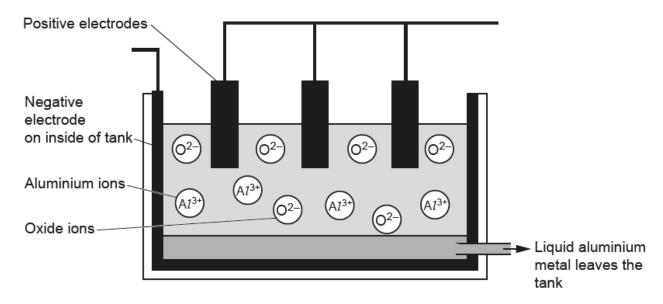
In **experiment 2** he puts small pieces of each metal into dilute acid. He measures the time taken to collect 10 cm³ of gas.

Table 7.1 and Table 7.2 show Kareem's results.

Experiment 1						
Metal	Observations					
Aluminium	No bubbles seen					
Magnesium	Bubbles appear on surface of metal					
Calcium	Rapid fizzing					
Copper	No bubbles seen					
Zinc	Bubbles appear on surface of metal					

Experiment 2					
Metal	Time taken to collect 10 cm ³ gas (s)				
Aluminium	30				
Magnesium	45				
Calcium	5				
Copper	No gas collected				
Zinc	70				

Table 7.1 Table 7.2


(a)* Explain what conclusions can be made about the reactivity of the five metals from Kareem's

	experiment.		
	Include any uncertainties in your conclusions.		
	Use information from Table 7.1 and Table 7.2 to support your answer.		
			[6]
(b)	Which two statements explain why some metals are more reactive than	others?	
	Tick (✓) two boxes.		
	Some metals form positive ions more easily.		
	Some metals have lower melting points.		
	Some metals are oxidised more easily.		
	Some metals conduct electricity more easily.		
	Some metals form ions with higher charges.		[2]

11. Nov/2021/Paper_J258/04/No.8

Aluminium is extracted from aluminium oxide by electrolysis.

The diagram shows the tank used to electrolyse aluminium oxide.

(a)	(i)	Before electrolysis, solid aluminium oxide is dissolved in a hot, molten compound called
		cryolite.

The formula for cryolite is Na_3AlF_6 .

Explain why the formula for cryolite contains six fluoride ions.

Jse ideas about charges in your answer.								
[2]								

(ii) The hot cryolite dissolves the aluminium oxide to form a molten solution.

Explain electroly	solid	aluminium	oxide	has	to	be	made	into	а	molten	solution	before
	 		•••••	•••••		•••••		•••••				

(b)	(i)	Describe wh	at happens at each electrode	during the electro	olysis.						
					[4]						
	(ii)	The melting	point of aluminium metal is 66	60°C.							
		What temperature should the inside of the tank be to make sure that aluminium leaves the tank as a liquid?									
		Put a ring a	around the correct answer.								
		<<660°C	>660°C	<660°C	~660°C						
(c)	Alur		>660°C d to make overhead cables. 0		[1]						
(c)		minium is use		Copper is used to	[1]						
(c)		minium is use	d to make overhead cables. (Copper is used to	[1]						
(c)		minium is use table shows	d to make overhead cables. Come properties of each meta	Copper is used to al. Density	[1]						
(c)	The	minium is use table shows Metal	d to make overhead cables. Come properties of each metal Electrical conductivity (MS/m)	Copper is used to al. Density (g/cm³)	[1]						
(c)	The	minium is use table shows Metal Copper Aluminium	d to make overhead cables. One properties of each metal sectors of	Density (g/cm³) 9.0 2.7	[1]						
(c)	The	minium is use table shows Metal Copper Aluminium	d to make overhead cables. One properties of each metal some properties conductivity (MS/m) 58 35	Density (g/cm³) 9.0 2.7	[1]						
(c)	The	minium is use table shows Metal Copper Aluminium	d to make overhead cables. One properties of each metal some properties conductivity (MS/m) 58 35	Density (g/cm³) 9.0 2.7	[1]						

12. Nov/2020/Paper J258/03/No.3

Fig. 3.1 shows the displayed formula of ethene.

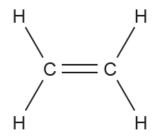


Fig. 3.1

(a) Ethene has some reactions that are different from those of ethane. These reactions are caused by its functional group.

Put a (ring) around the functional group of ethene in Fig. 3.1. [1]

(b) 1 mole of ethene contains 6.0×10^{23} molecules.

How many hydrogen atoms are there in one mole of ethene?

Put a (ring) around the correct answer.

1 4 6 6.0×10^{23} 2.4×10^{24} [1]

(c) (i) Ethene (Fig. 3.1) reacts with Substance D to give the compound shown in Fig. 3.2.

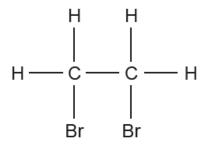


Fig. 3.2

Name Substance D.

......[1]

(ii) Ethene also reacts with hydrogen.

Draw the displayed formula of the compound formed.

13. Nov/2020/Paper_J258/04/No.2

Sundip passes electricity through solutions of some ionic compounds and finds out what products are formed at the positive and negative electrodes.

(a) Here are Sundip's results.

Solution	Product at positive electrode	Product at negative electrode		
concentrated sodium chloride	chlorine gas	hydrogen gas		
dilute sodium chloride	oxygen gas	hydrogen gas		
dilute copper chloride	chlorine gas	copper metal		
concentrated copper sulfate	oxygen gas	copper metal		
concentrated copper chloride				
dilute sodium sulfate				

- (i) Complete the table by predicting the products formed at each electrode when electricity is passed through concentrated copper chloride and dilute sodium sulfate. [3]
- (ii) Sundip uses tests to identify the gases formed in her experiments.

Draw lines to connect each gas to its correct test and result.

Gas Test and result relights a glowing splint			
	relights a glowing splint		
chlorine	makes a lighted splint go 'pop'		
oxygen	turns lime water milky		
hydrogen	turns blue litmus red and then bleaches it		
	turns red litmus blue and then bleaches it		
	[2]		

	(iii)	• Exp	but hyd	why, at the noper metal is the drogen gas is	formed wh	en electric	ity is pass	ed throug	h dilute so	odium chlo	oride.
(b)		s is a		of apparatus		s to pass e					
			:	electrodes leads and c a battery a beaker the solution		chloride.					
				elled diagram ough the solu				ip sets up	her exp	eriment to	pass
											[2]

14. Nov/2020/Paper J258/04/No.3

Crude oil is a source of useful chemicals.

(a)	Which two	statements	about	crude	oil	are	correct?
-----	-----------	------------	-------	-------	-----	-----	----------

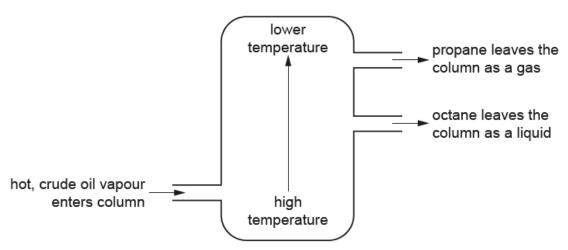
Tick (✓) two boxes.

Crude oil contains hydrocarbons which are used as fuels.

All crude oil compounds have the same empirical formula.

Most compounds in crude oil are alkenes.

Crude oil is a renewable resource.


Compounds from crude oil are used as a feedstock for petrochemicals.

[2]

(b) Crude oil is separated using fractional distillation.

Two compounds in crude oil are propane, C_3H_8 , and octane, C_8H_{18} .

The diagram shows where hot, crude oil vapour enters and where propane gas and octane liquid leave the fractionating column.

Explain how propane and octane are separated in the column.

Use ideas about boiling points and intermolecular forces in your answer.

(c) Petrol contains octane, C_8H_{18} , mixed with other carbon compounds.

The table shows octane and some other compounds in petrol.

Type of compound	Exa	mple
alkane	H H H H	H H H H
cycloalkane		H H H H H H H H H H H H H H H H H H H
	Name:	Name:
alcohol	H H—C—O—H H	H H H—C—C—O—H H H
	Name: methanol	Name: ethanol

(i) Complete the table by suggesting the names for each cycloalkane.

[2]

(ii) The general formula for alkanes is C_nH_{2n+2} .

Suggest the general formulae for cycloalkanes and alcohols.

Use the examples in the table to help you.

General formula of cycloalkanes C_n

General formula of alcohols C_n

[2]

(iii)	Carbon makes a greater range of different compounds than any other element.	
	Which two statements explain why?	
	Tick (✓) two boxes.	
	Carbon has a total of four electrons.	
	Carbon forms four covalent bonds.	
	Carbon forms compounds with oxygen and hydrogen.	
	Carbon atoms can join together in chains and rings.	
	Carbon is very abundant on Earth.	[21
		[2]