Complex Numbers - 2021/20 GCE AS Pure Further Mathematics A

- 1. Nov/2021/Paper Y531/01/No.4
 - (a) A locus C_1 is defined by $C_1 = \{z : |z+i| \le |z-2|\}.$
 - (i) Indicate by shading on the Argand diagram in the Printed Answer Booklet the region representing C_1 . [2]
 - (ii) Find the cartesian equation of the boundary line of the region representing C_1 , giving your answer in the form ax + by + c = 0. [2]
 - **(b)** A locus C_2 is defined by $C_2 = \{z : |z+1| \le 3\} \cap \{z : |z-2i| \ge 2\}.$

Indicate by shading on the Argand diagram in the Printed Answer Booklet the region representing C_2 . [3]

2. Nov/2021/Paper_Y531/01/No.6

In this question you must show detailed reasoning.

- (a) Solve the equation $2z^2 10z + 25 = 0$ giving your answers in the form a + bi. [2]
- (b) Solve the equation $3\omega 2 = i(5 + 2\omega)$ giving your answer in the form a + bi. [4]

3. Nov/2020/Paper_Y531/01/No.1

In this question you must show detailed reasoning.

Use an algebraic method to find the square roots of -77 - 36i. [6]

4. Nov/2020/Paper_Y531/01/No.3

In this question you must show detailed reasoning.

The complex number 7 - 4i is denoted by z.

(a) Giving your answers in the form a + bi, where a and b are rational numbers, find the following.

(i) $3z - 4z^*$

(ii)
$$(z+1-3i)^2$$
 [2]

(iii) $\frac{z+1}{z-1}$ [2]

- (b) Express z in modulus-argument form giving the modulus exactly and the argument correct to 3 significant figures. [3]
- (c) The complex number ω is such that $z\omega = \sqrt{585}(\cos(0.5) + i\sin(0.5))$.

Find the following.

- ω
- $arg(\omega)$, giving your answer correct to 3 significant figures

[3]

5. Nov/2020/Paper_Y531/01/No.8

Two loci, C_1 and C_2 , are defined by

$$C_1 = \left\{ z : |z| = \left| z - 4d^2 - 36 \right| \right\}$$

$$C_2 = \left\{ z : \arg(z - 12d - 3i) = \frac{1}{4}\pi \right\}$$

where d is a real number.

(a) Find, in terms of d, the complex number which is represented on an Argand diagram by the point of intersection of C_1 and C_2 .

[You may assume that
$$C_1 \cap C_2 \neq \emptyset$$
.] [6]

(b) Explain why the solution found in part (a) is not valid when d = 3. [2]