Density and Pressure – 2021/20 GCE Physics A Component 01

1. Nov/2020/Paper_H556_01/No.21(a)

A kiln used to harden ceramics is shown below.

The internal chamber is a cube. Each side of this cube has length 0.46 m. The chamber is sealed and full of argon. Argon behaves as an ideal gas.

- (a) The kiln is initially at 20 °C.

 The argon in the kiln has an initial pressure of 100 kPa.
 - (i) Calculate the amount of argon n in the chamber in moles.

<i>n</i> = mol

(ii) The temperature of the kiln is increased from 20 °C to 1300 °C.

Calculate the pressure in kPa at 1300 °C.

2. Nov/2020/Paper_H556_01/No.22(a)

A long wooden cylinder is placed into a liquid and it floats as shown.

The length of the cylinder below the liquid level is 15 cm.

(a	(i۱	State	Arch	imede	s' pi	rinci	ole
٩	a	, ,	٠,	Otato	$\Delta i \vee i i$	IIIICUC	o pi	111101	210

 	 	[1]

(ii) The pressure exerted by the liquid alone on the bottom of the cylinder is 1.9×10^3 Pa. Calculate the density ρ of the liquid.

$$\rho$$
 = kg m⁻³ [2]