Differentiation – 2021/20 GCE AS Mathematics A

1. Oct/2021/Paper_H230/01/No.2

The number of people, n, living in a small town is changing over time. In an attempt to predict the future growth of the town, a researcher uses the following model for n in terms of t, where t is the time in years from the start of the research.

$$n = 12500 + \frac{5000}{t}$$
, for $t \ge 1$

Find the rate of change of n when t = 5.

[4]

[1]

2. Oct/2021/Paper_H230/01/No.5

The fuel consumption of a car, C miles per gallon, varies with the speed, v miles per hour. Jamal models the fuel consumption of his car by the formula

$$C = \frac{12}{5}v - \frac{3}{125}v^2$$
, for $0 \le v \le 80$.

- (a) Suggest a reason why Jamal has included an upper limit in his model. [1]
- (b) Determine the speed that gives the maximum fuel consumption. [4]

Amaya's car does more miles per gallon than Jamal's car. She proposes to model the fuel consumption of her car using a formula of the form

 $C = \frac{12}{5}v - \frac{3}{125}v^2 + k$, for $0 \le v \le 80$, where k is a positive constant.

- (c) Give a reason why this model is **not** suitable.
- (d) Suggest a different change to Jamal's formula which would give a more suitable model. [2]

3. Oct/2021/Paper_H230/01/No.9

In this question you must show detailed reasoning.

Find the equation of the straight line with positive gradient that passes through (0, 2) and is a tangent to the curve $y = x^2 - x + 6$.

4. Oct/2021/Paper_H230/02/No.4

The quadratic polynomial $2x^2 - 3$ is denoted by f(x).

Use differentiation from first principles to determine the value of f'(2).

[5]

5. Oct/2020/Paper_H230/01/No.1(a)

(a) Find
$$\frac{d}{dx} \left(x^3 - 3x + \frac{5}{x^2} \right)$$
. [3]

6. Oct/2020/Paper_H230/02/No.3

In this question you must show detailed reasoning.

Find the equation of the normal to the curve $y = 4\sqrt{x} - 3x + 1$ at the point on the curve where x = 4. Give your answer in the form ax + by + c = 0, where a, b and c are integers. [7]

7. Oct/2020/Paper_H230/02/No.7

The diagram shows a model for the roof of a toy building. The roof is in the form of a solid triangular prism ABCDEF. The base ACFD of the roof is a horizontal rectangle, and the cross-section ABC of the roof is an isosceles triangle with AB = BC.

The lengths of AC and CF are 2x cm and y cm respectively, and the height of BE above the base of the roof is x cm.

The total surface area of the five faces of the roof is $600 \, \text{cm}^2$ and the volume of the roof is $V \, \text{cm}^3$.

- (a) Show that $V = kx(300 x^2)$, where $k = \sqrt{a} + b$ and a and b are integers to be determined. [6]
- (b) Use differentiation to determine the value of x for which the volume of the roof is a maximum. [4]
- (c) Find the maximum volume of the roof. Give your answer in cm³, correct to the nearest integer. [1]
- (d) Explain why, for this roof, x must be less than a certain value, which you should state. [2]

8. June/2019/Paper_H230/01/No.1(a_ b)

It is given that $f(x) = 3x - \frac{5}{x^3}$.

Find

(a)
$$f'(x)$$
, [3]

(b)
$$f''(x)$$
, [2]

ocrsolvedexampapers.co.uk

9.	June/2019/Paper_	H230/01/No.4
----	------------------	--------------

- (a) Find the coordinates of the stationary points on the curve $y = x^3 6x^2 + 9x$. [4]
- **(b)** The equation $x^3 6x^2 + 9x + k = 0$ has exactly one real root.

Using your answers from part (a) or otherwise, find the range of possible values of k. [2]

10. June/2019/Paper_H230/01/No.7

- (a) Write down an expression for the gradient of the curve $y = e^{kx}$. [1]
- (b) The line L is a tangent to the curve $y = e^{\frac{1}{2}x}$ at the point where x = 2. Show that L passes through the point (0, 0).
- (c) Find the coordinates of the point of intersection of the curves $y = 3e^x$ and $y = 1 2e^{\frac{1}{2}x}$. [6]

11. June/2019/Paper_H230/02/No.2

- (a) Express $5x^2 20x + 3$ in the form $p(x+q)^2 + r$, where p, q and r are integers. [3]
- (b) State the coordinates of the minimum point of the curve $y = 5x^2 20x + 3$. [2]
- (c) State the equation of the normal to the curve $y = 5x^2 20x + 3$ at its minimum point. [1]