Electrons, bonding and structure – 2021/20 GCE AS Chemistry A ### 1. Nov/2021/Paper_H032/01/No.1 Which compound has the highest boiling point? - A ethanol - B heptane - C sodium chloride - **D** water | Your answer | | [1] | |-------------|--|-----| |-------------|--|-----| ### 2. Nov/2021/Paper_H032/01/No.2 Pauling electronegativity values for the halogens F to I and some elements in period 2 of the periodic table are shown below. | B
2.04 | C
2.55 | N
3.04 | O
3.44 | F
3.98 | |-----------|-----------|-----------|-----------|--------------------| | | | | | C <i>l</i>
3.16 | | | | | | Br
2.96 | | | | | | I
2.66 | Which bond has the correct polarity? | Α | В | С | D | | |-----------|---------------------------------|--------------------|---|--| | δ- N—I δ+ | ^{δ–} C—F ^{δ+} | δ- B—C <i>l</i> δ+ | ^{δ–} Br—C <i>l</i> ^{δ+} | | | Your answer | | [1] | |-------------|--|-----| |-------------|--|-----| | 3. | | 2021/Paper_H032/01/No.3 ich compound releases hydroxide ions when it dissolves in water? | | |----|-----|--|-----| | | Α | CH ₃ COOH | | | | В | HNO ₃ | | | | С | H_2SO_4 | | | | D | NH ₃ | | | | You | ır answer | [1] | | 4. | | 2020/Paper_H032/01/No.1
nich substance contains polar molecules? | | | | Α | C_2H_4 | | | | В | CO ₂ | | | | С | NCl_3 | | | | D | SF ₆ | | | | You | ur answer | [1] | | 5. | | /2020/Paper_H032/01/No.3 ich statement explains why ice is less dense than water? | | | | Α | Hydrogen bonds are stronger in ice than in water. | | | | В | Hydrogen bonds hold H ₂ O molecules apart in ice. | | | | С | Ice is a solid but water is a liquid. | | | | D | Ice contains hydrogen bonds, but water does not contain hydrogen bonds. | | | | Υοι | ur answer | [1] | ### ocrsolvedexampapers.co.uk | Nov/2020/Paper_H032/01/No |). No\ | 6. | |---|--------|----| |---|--------|----| Which p-block element contains atoms with one unpaired electron? - A A1 - B Si - C P - **D** S | Your answer | | [1] | |-------------|--|-----| |-------------|--|-----| ## **7.** Nov/2020/Paper_H032/01/No.21(a) This question is about atoms, isotopes and mass spectrometry. (a) Complete the table to show the number of electrons that can fill the first four shells. | Shell | 1st shell | 2nd shell | 3rd shell | 4th shell | |---------------------|-----------|-----------|-----------|-----------| | Number of electrons | | | | | [1] 8. | Nov/ | 2021, | /Paper_H032/02/No.1 | | |------|-------|---|-----| | Thi | s que | estion is about compounds of sulfur. | | | (a) | Pot | assium sulfide, K ₂ S, shows ionic bonding. | | | | (i) | Explain what is meant by ionic bonding . | | | | | | | | | | | [1] | | | (ii) | Draw a 'dot-and-cross' diagram to show the bonding in K ₂ S. | | | | | Show outer electrons only. | [2] | | (b) | Sulf | fur difluoride, SF ₂ , shows covalent bonding. | | | | | w a 'dot-and-cross' diagram to show the bonding in SF ₂ . | | | | Sho | ow outer electrons only. | | [2] # ocrsolvedexampapers.co.uk | (C) | Atr | born temperature, K ₂ S is a solid, but SF ₂ is a gas. | |-----|------|--| | | | ideas about structure and bonding to explain this difference. | [3] | | (d) | | fur hexafluoride, SF ₆ , is used in medical ultrasound imaging because SF ₆ is unreactive. | | | (i) | State the shape of, and F—S—F bond angle in, an SF ₆ molecule. | | | | Shape | | | | Bond angle | | | (ii) | • | | | | | | | | [1] | ### 9. Nov/2020/Paper_H032/02/No.(4(a) A student carries out an investigation to find the enthalpy change for the decomposition of magnesium carbonate, ΔH_1 (Reaction 1). Reaction 1 MgCO₃(s) $$\rightarrow$$ MgO(s) + CO₂(g) ΔH_1 This enthalpy change cannot be found directly. It can be determined indirectly from the enthalpy changes for the reactions below, which can be found by experiment. **Reaction 2** MgCO₃(s) + 2HC $$l(aq) \rightarrow MgCl_2(aq) + H_2O(l) + CO_2(g)$$ ΔH_2 **Reaction 3** MgO(s) + 2HC $$l(aq) \rightarrow MgCl_2(aq) + H_2O(l)$$ ΔH_3 The enthalpy cycle is shown in Fig. 4.1. Fig. 4.1 ### Determination of ΔH_2 for Reaction 2 #### Student's method - Weigh a 250 cm³ polystyrene cup. - Add about 100 cm³ of 2.00 mol dm⁻³ hydrochloric acid (an excess) to the polystyrene cup and record the initial temperature of the HCl(aq). - Add 4.215g MgCO₃, stir the mixture, and record the final temperature. - Weigh the polystyrene cup containing the final solution. ### Results | Mass of polystyrene cup/g | 21.415 | |--|---------| | Mass of polystyrene cup + final solution/g | 124.425 | | Initial temperature of HC1(aq)/°C | 20.40 | | Final temperature of solution/°C | 25.40 | ### Determination of ΔH_3 for Reaction 3 The student uses the same method as for **Reaction 2** but with MgO in place of MgCO₃. The student calculates ΔH_3 for **Reaction 3** as -136.1 kJ mol⁻¹. ## ocrsolvedexampapers.co.uk | ı)* | Use the student's results to calculate ΔH_2 for Reaction 2 and determine the enthalpy change ΔH_1 , in kJ mol ⁻¹ , for the decomposition of magnesium carbonate (Reaction 1), using the energy cycle in Fig. 4.1 . | |-----|--| | | Assume the specific heat capacity, c , of the reaction mixture is the same as for water. | Additional answer space if required. | | | | | | | | | | | | | | | [6] |