Electrons, bonding and structure – 2021/20 GCE AS Chemistry A

1. Nov/2021/Paper_H032/01/No.1

Which compound has the highest boiling point?

- A ethanol
- B heptane
- C sodium chloride
- **D** water

Your answer		[1]
-------------	--	-----

2. Nov/2021/Paper_H032/01/No.2

Pauling electronegativity values for the halogens F to I and some elements in period 2 of the periodic table are shown below.

B 2.04	C 2.55	N 3.04	O 3.44	F 3.98
				C <i>l</i> 3.16
				Br 2.96
				I 2.66

Which bond has the correct polarity?

Α	В	С	D	
δ- N—I δ+	^{δ–} C—F ^{δ+}	δ- B—C <i>l</i> δ+	^{δ–} Br—C <i>l</i> ^{δ+}	

Your answer		[1]
-------------	--	-----

3.		2021/Paper_H032/01/No.3 ich compound releases hydroxide ions when it dissolves in water?	
	Α	CH ₃ COOH	
	В	HNO ₃	
	С	H_2SO_4	
	D	NH ₃	
	You	ır answer	[1]
4.		2020/Paper_H032/01/No.1 nich substance contains polar molecules?	
	Α	C_2H_4	
	В	CO ₂	
	С	NCl_3	
	D	SF ₆	
	You	ur answer	[1]
5.		/2020/Paper_H032/01/No.3 ich statement explains why ice is less dense than water?	
	Α	Hydrogen bonds are stronger in ice than in water.	
	В	Hydrogen bonds hold H ₂ O molecules apart in ice.	
	С	Ice is a solid but water is a liquid.	
	D	Ice contains hydrogen bonds, but water does not contain hydrogen bonds.	
	Υοι	ur answer	[1]

ocrsolvedexampapers.co.uk

Nov/2020/Paper_H032/01/No). No\	6.
---	--------	----

Which p-block element contains atoms with one unpaired electron?

- A A1
- B Si
- C P
- **D** S

Your answer		[1]
-------------	--	-----

7. Nov/2020/Paper_H032/01/No.21(a)

This question is about atoms, isotopes and mass spectrometry.

(a) Complete the table to show the number of electrons that can fill the first four shells.

Shell	1st shell	2nd shell	3rd shell	4th shell
Number of electrons				

[1]

8.

Nov/	2021,	/Paper_H032/02/No.1	
Thi	s que	estion is about compounds of sulfur.	
(a)	Pot	assium sulfide, K ₂ S, shows ionic bonding.	
	(i)	Explain what is meant by ionic bonding .	
			[1]
	(ii)	Draw a 'dot-and-cross' diagram to show the bonding in K ₂ S.	
		Show outer electrons only.	
			[2]
(b)	Sulf	fur difluoride, SF ₂ , shows covalent bonding.	
		w a 'dot-and-cross' diagram to show the bonding in SF ₂ .	
	Sho	ow outer electrons only.	

[2]

ocrsolvedexampapers.co.uk

(C)	Atr	born temperature, K ₂ S is a solid, but SF ₂ is a gas.
		ideas about structure and bonding to explain this difference.
		[3]
(d)		fur hexafluoride, SF ₆ , is used in medical ultrasound imaging because SF ₆ is unreactive.
	(i)	State the shape of, and F—S—F bond angle in, an SF ₆ molecule.
		Shape
		Bond angle
	(ii)	•
		[1]

9. Nov/2020/Paper_H032/02/No.(4(a)

A student carries out an investigation to find the enthalpy change for the decomposition of magnesium carbonate, ΔH_1 (Reaction 1).

Reaction 1 MgCO₃(s)
$$\rightarrow$$
 MgO(s) + CO₂(g) ΔH_1

This enthalpy change cannot be found directly. It can be determined indirectly from the enthalpy changes for the reactions below, which can be found by experiment.

Reaction 2 MgCO₃(s) + 2HC
$$l(aq) \rightarrow MgCl_2(aq) + H_2O(l) + CO_2(g)$$
 ΔH_2

Reaction 3 MgO(s) + 2HC
$$l(aq) \rightarrow MgCl_2(aq) + H_2O(l)$$
 ΔH_3

The enthalpy cycle is shown in Fig. 4.1.

Fig. 4.1

Determination of ΔH_2 for Reaction 2

Student's method

- Weigh a 250 cm³ polystyrene cup.
- Add about 100 cm³ of 2.00 mol dm⁻³ hydrochloric acid (an excess) to the polystyrene cup and record the initial temperature of the HCl(aq).
- Add 4.215g MgCO₃, stir the mixture, and record the final temperature.
- Weigh the polystyrene cup containing the final solution.

Results

Mass of polystyrene cup/g	21.415
Mass of polystyrene cup + final solution/g	124.425
Initial temperature of HC1(aq)/°C	20.40
Final temperature of solution/°C	25.40

Determination of ΔH_3 for Reaction 3

The student uses the same method as for **Reaction 2** but with MgO in place of MgCO₃.

The student calculates ΔH_3 for **Reaction 3** as -136.1 kJ mol⁻¹.

ocrsolvedexampapers.co.uk

ı)*	Use the student's results to calculate ΔH_2 for Reaction 2 and determine the enthalpy change ΔH_1 , in kJ mol ⁻¹ , for the decomposition of magnesium carbonate (Reaction 1), using the energy cycle in Fig. 4.1 .
	Assume the specific heat capacity, c , of the reaction mixture is the same as for water.
	Additional answer space if required.
	[6]