Enthalpy changes - 2021/20 GCE AS Chemistry A

1. Nov/2021/Paper_H032/01/No.10

The equation for the complete combustion of propene, $\mathrm{C_3H_6}$, is shown below.

$${\rm C_3H_6(g)} + 4 \frac{1}{2} {\rm O_2(g)} \rightarrow 3 {\rm CO_2(g)} + 3 {\rm H_2O(I)}$$

Standard enthalpy changes of formation, $\Delta_{\rm f} H^{\rm e},$ are shown in the table.

Compound	Δ _f H ^e /kJ mol ^{−1}
C ₃ H ₆ (g)	+20
O ₂ (g)	0
CO ₂ (g)	-394
H ₂ O(I)	-286

What is the standard enthalpy change of combustion of $C_3H_6(g)$, in $kJ mol^{-1}$?

- **A** -2060
- **B** -700
- C +700
- **D** +2060

Your answer [1]

2. Nov/2021/Paper_H032/01/No.22(a, c)

This question is about enthalpy changes.

Hydrogen, H₂, can be manufactured by the reaction of methane and steam.

This is a reversible reaction, as shown in **Equilibrium 22.1** below.

Equilibrium 22.1
$$CH_4(g) + H_2O(g) \implies 3H_2(g) + CO(g)$$
 $\Delta H = +206 \text{ kJ mol}^{-1}$

(a) The rate of this reaction increases when a catalyst is present.

Complete the enthalpy profile diagram below.

On your diagram:

- label the activation energies, $E_{\rm a}$ (without catalyst) and $E_{\rm c}$ (with catalyst) label the enthalpy change of reaction, ΔH .

[3]

(c) The reaction for the production of hydrogen is repeated below.

$$CH_4(g) + H_2O(g) \iff 3H_2(g) + CO(g)$$
 $\Delta H = +206 \,\text{kJ} \,\text{mol}^{-1}$

$$\Delta H = +206 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Average bond enthalpies are shown in the table.

Bond	Average bond enthalpy /kJ mol ⁻¹
C–H	413
О–Н	464
C≣O	1077

Calculate the bond enthalpy of the H–H bond.

3. Nov/2020/Paper_H032/01/No.11

Hydrogen and oxygen react as shown below.

$$2\mathsf{H}_2(\mathsf{g}) + \mathsf{O}_2(\mathsf{g}) \to 2\mathsf{H}_2\mathsf{O}(\mathsf{g})$$

$$\Delta_r H = -486 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Bond enthalpies are shown in the table.

Bond	Н-Н	0=0
Bond enthalpy /kJ mol ⁻¹	+436	+498

What is the bond enthalpy, in kJ mol⁻¹, for the O-H bond?

- A +221
- **B** +355
- C +464
- **D** +928

Your answer [1]

4. Nov/2020/Paper_H032/01/No.24(a)

This question is about making ammonia, NH₃.

(a) Ammonia is manufactured by reacting nitrogen with hydrogen:

$$\mathrm{N_2(g)} + 3\mathrm{H_2(g)} \rightarrow 2\mathrm{NH_3(g)}$$

Standard enthalpy changes of combustion, $\Delta_{\rm c}H^{\rm e}$, are given in the table.

Substance	Δ _c H ^e /kJ mol ⁻¹
N ₂ (g)	+180
H ₂ (g)	-286
NH ₃ (g)	-293

Calculate the standard enthalpy change of formation, $\Delta_{\rm f} H^{\rm o},$ for ${\rm NH_3(g)}.$

$$\Delta_{\rm f} H^{\rm o}$$
 for NH₃(g) = kJ mol⁻¹ [3]

5. Nov/2021/Paper H032/02/No.4

A student carries out an investigation to find the enthalpy change for the decomposition of magnesium carbonate, ΔH_1 (Reaction 1).

Reaction 1 MgCO₃(s)
$$\rightarrow$$
 MgO(s) + CO₂(g) ΔH_1

This enthalpy change cannot be found directly. It can be determined indirectly from the enthalpy changes for the reactions below, which can be found by experiment.

Reaction 2 MgCO₃(s) + 2HC
$$l$$
(aq) \rightarrow MgC l ₂(aq) + H₂O(l) + CO₂(g) ΔH ₂

Reaction 3 MgO(s) + 2HC
$$l(aq) \rightarrow MgCl_2(aq) + H_2O(l)$$
 ΔH_3

The enthalpy cycle is shown in Fig. 4.1.

Fig. 4.1

Determination of ΔH_2 for Reaction 2

Student's method

- Weigh a 250 cm³ polystyrene cup.
- Add about 100 cm³ of 2.00 mol dm⁻³ hydrochloric acid (an excess) to the polystyrene cup and record the initial temperature of the HCI(aq).
- Add 4.215g MgCO₃, stir the mixture, and record the final temperature.
- Weigh the polystyrene cup containing the final solution.

Results

Mass of polystyrene cup/g	21.415
Mass of polystyrene cup + final solution/g	124.425
Initial temperature of HCl(aq)/°C	20.40
Final temperature of solution/°C	25.40

Determination of ΔH_3 for Reaction 3

The student uses the same method as for **Reaction 2** but with MgO in place of MgCO₃.

The student calculates ΔH_3 for **Reaction 3** as -136.1 kJ mol⁻¹.

ocrsolvedexampapers.co.uk

*	Use the student's results to calculate ΔH_2 for Reaction 2 and determine the enthalpy change ΔH_1 , in kJ mol ⁻¹ , for the decomposition of magnesium carbonate (Reaction 1), using the energy cycle in Fig. 4.1 .						
	Assume the specific heat capacity, c , of the reaction mixture is the same as for water.						
	Additional answer space if required.						
	Additional answer space in required.						
	T C						

6.	Nov	/2020	/Paper_	H032/	m2/	No.2
Ο.	INOV	2020)	i apci_	_11032/	02/	140.2

Enthalpy changes of combustion can be determined directly by experiment.

(a) Explain the term enthalpy change of combustion, $\Delta_c H$.	
--	--

				[2

(b) A student carries out an experiment to determine the enthalpy change of combustion of cyclohexane, C₆H₁₂, using the apparatus shown in the diagram.

In the experiment, $0.525\,\mathrm{g}$ of cyclohexane are burnt, and the temperature of the $200\,\mathrm{cm}^3$ of water changes from $21.0\,^\circ\mathrm{C}$ to $41.0\,^\circ\mathrm{C}$.

Calculate the enthalpy change of combustion, $\Delta_c H$, of cyclohexane in kJ mol⁻¹.

Give your answer to 3 significant figures.

$$\Delta_{c}H = kJ mol^{-1}$$
 [4]

ocrsolvedexampapers.co.uk

(c)	The student finds that their experimental value for $\Delta_{\rm c}H$ is less exothermic than the value data book.				
	The	student evaluates the experimental results.			
	(i)	The uncertainty in each thermometer reading is $\pm 0.5^{\circ}\text{C}$ and the uncertainty in the measured volume of water is $\pm 2\text{cm}^3$.			
		Determine whether the temperature change or the measured volume of water has the greater percentage uncertainty.			
		[2]			
	(ii)	Suggest two reasons, apart from measurement uncertainties, why the experimental value for $\Delta_{\rm c}H$ is less exothermic than the data book value.			
		Reason 1			
		Reason 2			
		[2]			
	(iii)	In the experiment the water in the beaker was heated for 5 minutes. The student thought that the experiment could be improved by heating the water for 10 minutes.			
		Explain whether the accuracy in the student's calculated value for $\Delta_{\rm c}H$ may or may $\bf not$ be improved by heating for longer.			
		[2]			