Enthalpy changes - 2021/20 GCE AS Chemistry A ## 1. Nov/2021/Paper_H032/01/No.10 The equation for the complete combustion of propene, $\mathrm{C_3H_6}$, is shown below. $${\rm C_3H_6(g)} + 4 \frac{1}{2} {\rm O_2(g)} \rightarrow 3 {\rm CO_2(g)} + 3 {\rm H_2O(I)}$$ Standard enthalpy changes of formation, $\Delta_{\rm f} H^{\rm e},$ are shown in the table. | Compound | Δ _f H ^e /kJ mol ^{−1} | |-----------------------------------|---| | C ₃ H ₆ (g) | +20 | | O ₂ (g) | 0 | | CO ₂ (g) | -394 | | H ₂ O(I) | -286 | What is the standard enthalpy change of combustion of $C_3H_6(g)$, in $kJ mol^{-1}$? - **A** -2060 - **B** -700 - C +700 - **D** +2060 Your answer [1] #### **2.** Nov/2021/Paper_H032/01/No.22(a, c) This question is about enthalpy changes. Hydrogen, H₂, can be manufactured by the reaction of methane and steam. This is a reversible reaction, as shown in **Equilibrium 22.1** below. **Equilibrium 22.1** $$CH_4(g) + H_2O(g) \implies 3H_2(g) + CO(g)$$ $\Delta H = +206 \text{ kJ mol}^{-1}$ (a) The rate of this reaction increases when a catalyst is present. Complete the enthalpy profile diagram below. On your diagram: - label the activation energies, $E_{\rm a}$ (without catalyst) and $E_{\rm c}$ (with catalyst) label the enthalpy change of reaction, ΔH . [3] (c) The reaction for the production of hydrogen is repeated below. $$CH_4(g) + H_2O(g) \iff 3H_2(g) + CO(g)$$ $\Delta H = +206 \,\text{kJ} \,\text{mol}^{-1}$ $$\Delta H = +206 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$ Average bond enthalpies are shown in the table. | Bond | Average bond enthalpy
/kJ mol ⁻¹ | |------|--| | C–H | 413 | | О–Н | 464 | | C≣O | 1077 | Calculate the bond enthalpy of the H–H bond. ### **3.** Nov/2020/Paper_H032/01/No.11 Hydrogen and oxygen react as shown below. $$2\mathsf{H}_2(\mathsf{g}) + \mathsf{O}_2(\mathsf{g}) \to 2\mathsf{H}_2\mathsf{O}(\mathsf{g})$$ $$\Delta_r H = -486 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$ Bond enthalpies are shown in the table. | Bond | Н-Н | 0=0 | |--|------|------| | Bond enthalpy
/kJ mol ⁻¹ | +436 | +498 | What is the bond enthalpy, in kJ mol⁻¹, for the O-H bond? - A +221 - **B** +355 - C +464 - **D** +928 Your answer [1] # **4.** Nov/2020/Paper_H032/01/No.24(a) This question is about making ammonia, NH₃. (a) Ammonia is manufactured by reacting nitrogen with hydrogen: $$\mathrm{N_2(g)} + 3\mathrm{H_2(g)} \rightarrow 2\mathrm{NH_3(g)}$$ Standard enthalpy changes of combustion, $\Delta_{\rm c}H^{\rm e}$, are given in the table. | Substance | Δ _c H ^e /kJ mol ⁻¹ | |---------------------|---| | N ₂ (g) | +180 | | H ₂ (g) | -286 | | NH ₃ (g) | -293 | Calculate the standard enthalpy change of formation, $\Delta_{\rm f} H^{\rm o},$ for ${\rm NH_3(g)}.$ $$\Delta_{\rm f} H^{\rm o}$$ for NH₃(g) = kJ mol⁻¹ [3] #### 5. Nov/2021/Paper H032/02/No.4 A student carries out an investigation to find the enthalpy change for the decomposition of magnesium carbonate, ΔH_1 (Reaction 1). Reaction 1 MgCO₃(s) $$\rightarrow$$ MgO(s) + CO₂(g) ΔH_1 This enthalpy change cannot be found directly. It can be determined indirectly from the enthalpy changes for the reactions below, which can be found by experiment. **Reaction 2** MgCO₃(s) + 2HC $$l$$ (aq) \rightarrow MgC l ₂(aq) + H₂O(l) + CO₂(g) ΔH ₂ **Reaction 3** MgO(s) + 2HC $$l(aq) \rightarrow MgCl_2(aq) + H_2O(l)$$ ΔH_3 The enthalpy cycle is shown in Fig. 4.1. Fig. 4.1 ## Determination of ΔH_2 for Reaction 2 #### Student's method - Weigh a 250 cm³ polystyrene cup. - Add about 100 cm³ of 2.00 mol dm⁻³ hydrochloric acid (an excess) to the polystyrene cup and record the initial temperature of the HCI(aq). - Add 4.215g MgCO₃, stir the mixture, and record the final temperature. - Weigh the polystyrene cup containing the final solution. #### Results | Mass of polystyrene cup/g | 21.415 | |--|---------| | Mass of polystyrene cup + final solution/g | 124.425 | | Initial temperature of HCl(aq)/°C | 20.40 | | Final temperature of solution/°C | 25.40 | #### Determination of ΔH_3 for Reaction 3 The student uses the same method as for **Reaction 2** but with MgO in place of MgCO₃. The student calculates ΔH_3 for **Reaction 3** as -136.1 kJ mol⁻¹. ### ocrsolvedexampapers.co.uk | * | Use the student's results to calculate ΔH_2 for Reaction 2 and determine the enthalpy change ΔH_1 , in kJ mol ⁻¹ , for the decomposition of magnesium carbonate (Reaction 1), using the energy cycle in Fig. 4.1 . | | | | | | | |---|--|--|--|--|--|--|--| | | Assume the specific heat capacity, c , of the reaction mixture is the same as for water. | Additional answer space if required. | | | | | | | | | Additional answer space in required. | T C | | | | | | | | 6. | Nov | /2020 | /Paper_ | H032/ | m2/ | No.2 | |----|------|-------|---------|---------|-----|-------| | Ο. | INOV | 2020) | i apci_ | _11032/ | 02/ | 140.2 | Enthalpy changes of combustion can be determined directly by experiment. | (a) Explain the term enthalpy change of combustion, $\Delta_c H$. | | |--|--| |--|--| |
 |
 |
 |
 | | |------|------|------|------|----| |
 |
 |
 |
 | | | | | | | [2 | (b) A student carries out an experiment to determine the enthalpy change of combustion of cyclohexane, C₆H₁₂, using the apparatus shown in the diagram. In the experiment, $0.525\,\mathrm{g}$ of cyclohexane are burnt, and the temperature of the $200\,\mathrm{cm}^3$ of water changes from $21.0\,^\circ\mathrm{C}$ to $41.0\,^\circ\mathrm{C}$. Calculate the enthalpy change of combustion, $\Delta_c H$, of cyclohexane in kJ mol⁻¹. Give your answer to 3 significant figures. $$\Delta_{c}H = kJ mol^{-1}$$ [4] ### ocrsolvedexampapers.co.uk | (c) | The student finds that their experimental value for $\Delta_{\rm c}H$ is less exothermic than the value data book. | | | | | |-----|--|--|--|--|--| | | The | student evaluates the experimental results. | | | | | | (i) | The uncertainty in each thermometer reading is $\pm 0.5^{\circ}\text{C}$ and the uncertainty in the measured volume of water is $\pm 2\text{cm}^3$. | | | | | | | Determine whether the temperature change or the measured volume of water has the greater percentage uncertainty. | [2] | | | | | | (ii) | Suggest two reasons, apart from measurement uncertainties, why the experimental value for $\Delta_{\rm c}H$ is less exothermic than the data book value. | | | | | | | Reason 1 | | | | | | | | | | | | | | Reason 2 | | | | | | | [2] | | | | | | (iii) | In the experiment the water in the beaker was heated for 5 minutes. The student thought that the experiment could be improved by heating the water for 10 minutes. | | | | | | | Explain whether the accuracy in the student's calculated value for $\Delta_{\rm c}H$ may or may $\bf not$ be improved by heating for longer. | [2] | | | | | | | | | | |