<u>Groups – 2021/20 GCE AS Additional Pure Further Mathematics A</u>

1. Nov/2021/Paper_Y535/01/No.6

The set S consists of the following four complex numbers.

$$\sqrt{3} + i - \sqrt{3} - i - i \sqrt{3} - 1 + i \sqrt{3}$$

For $z_1, z_2 \in S$, the binary operation \bigcirc is defined by $z_1 \bigcirc z_2 = \frac{1}{4}(1 + i\sqrt{3})z_1z_2$.

(a) (i) Complete the Cayley table for (S, \bigcirc) given in the Printed Answer Booklet.	[3]	
(ii) Verify that (S, O) is a group.	[4]	
(iii) State the order of each element of (S, \bigcirc) .	[1]	
(b) Write down the only proper subgroup of (S, \bigcirc) .		
(c) (i) Explain why (S, O) is a cyclic group.	[1]	

(ii) List all possible generators of (S, O). [1]

2. Nov/2020/Paper_Y535/01/No.4

(a)	For	the set $S = \{2, 4, 6, 8, 10, 12\}$, under the operation \times_{14} of multiplication modulo	14,		
	com	plete the Cayley table given in the Printed Answer Booklet.	[4]		
(b)	Sho	w that (S, \times_{14}) forms a group, G. (You may assume that \times_{14} is associative.)	[4]		
(c)	(i)	Write down all the proper subgroups of G .	[2]		
	(ii)	Given that G is cyclic, write down all the possible generators of G .	[2]		