Manipulating genomes – 2021/20 GCE Biology A Component 02

1.

2.

	/2021/Paper_H420/02/No.9 sich of the following substances is not required in DNA sequencing?				
Α	DNA polymerase				
В	primers				
С	RNA nucleotides				
D	terminator bases				
You	ur answer				
Nov/2021/Paper_H420/02/No.10 DNA fragments can be separated using gel electrophoresis.					
Wh	ich of the following explains how gel electrophoresis is able to separate DNA fragments?				
Α	DNA carries a negative charge and large fragments are pulled more strongly than small fragments towards the positive electrode.				
В	DNA carries a negative charge and small fragments are able to travel more quickly than large fragments towards the positive electrode.				
С	DNA carries a positive charge and large fragments are pulled more strongly than small fragments towards the negative electrode.				
D	DNA carries a positive charge and small fragments are able to travel more quickly than large fragments towards the negative electrode.				
Υοι	ur answer [1]				

[1]

ocrsolvedexampapers.co.uk

3.			1/Paper_H420/02/No.11 equencing has a number of uses.					
	Wh	ich of	of the following is not a use of gene sequencing?					
	Α	dete	ermining the amino acid sequence of a polypeptide					
B the classification of newly-discovered organisms								
	С	the	polymerase chain reaction					
	D	the	selection of the correct vaccine in a disease outbreak					
	You	ır ans	swer	[1]				
4.	Nov,		1/Paper_H420/02/No.16(b) IA profiling makes use of the fact that DNA varies between individuals.					
	(i) When creating a DNA profile, DNA is first extracted from a sample of tissue.							
			Outline the subsequent steps involved in producing a DNA profile.					
				[4]				

(ii) Fig. 16.2 shows a DNA profile used to determine fatherhood in a paternity case.

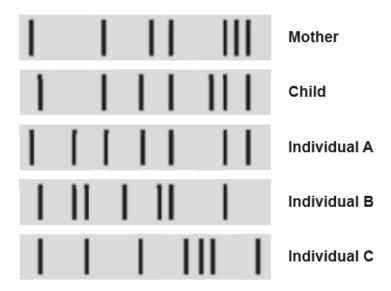


Fig. 16.2

Identify the ind	lividual who is	most likely to	be the child's fa	ther.
------------------	-----------------	----------------	-------------------	-------

Justify your answer.

Individual	
Justification	
	4

Nov	/2021	/Paper	H420	/03	/No.1(c

(c) Lungs are the specialised gas exchange surfaces in mammals. Dogs are mammals.

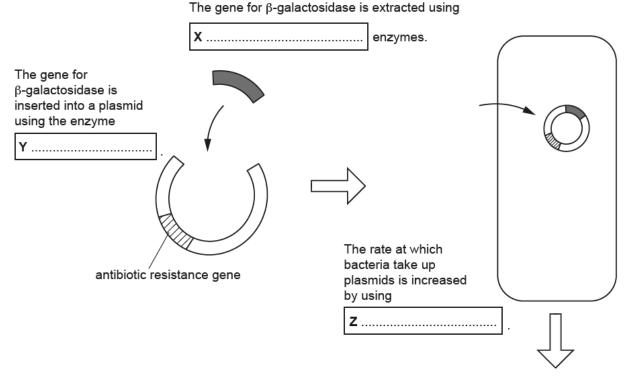
A disease called canine pulmonary fibrosis (CPF) can affect lung function in dogs. CPF can reduce the tidal volume of a dog's lungs.

(i) The West Highland Terrier develops CPF more often than other breeds of dog.

The lung function of a West Highland Terrier was tested. At rest, its ventilation rate was 1.44 dm³ min⁻¹ and its breathing rate was 24 breaths min⁻¹.

Calculate the tidal volume of the West Highland Terrier in cm³.

Tidal volume = cm ³	cn	c	cm ³ [1
Explain how the high occurrence of CPF in West Highland Terriers could have been result of artificial selection.	rriers could have be	phland Terriers could have b	been
			•••••
			[1
Explain how DNA sequencing could help scientists understand how the West Highla Terrier's genes affect its probability of developing CPF.	, and the second		
			12


ocrsolvedexampapers.co.uk

iv)	Another disease that affects dogs is caused by parvovirus. Dogs can be vaccinated against parvovirus at six weeks of age.
	Suggest what the parvovirus vaccine is likely to contain.
	[1]
(v)	Dogs need a booster vaccination against parvovirus when they are one year old.
	Explain why a booster vaccination is needed.
	[1]

6. Nov/2020/Paper_H420/03/No.4(c)

(c) Bacteria such as E. coli can be genetically engineered for use in medical science.

An example of the genetic engineering of E. coli is shown in the diagram below.

E. coli that have taken up the recombinant plasmid are injected into mice with liver tumours.

(i)	Complete the diagram labelled X , Y and Z .	above by	writing	the	missing	words	or	phrases	in	the	boxes
		Ans	wer on th	ne di	agram						[3]

ocrsolvedexampapers.co.uk

(ii)	Suggest why the scientists used a plasmid that contained an antibiotic resistance gene.				
	[1]				
(iii)	The scientists observed the following:				
	 1 in 400 bacteria took up the plasmid 1 in 1000 of the plasmids taken up by bacteria contained the β-galactosidase gene. 				
	Calculate the percentage of bacteria that contained the β -galactosidase gene.				
	percentage of bacteria = % [2]				
(iv)	A technique called quantitative PCR is used to check that the <i>E. coli</i> population is growing on the mice liver tumours rather than on healthy tissue.				
	Suggest how the scientists could use PCR to compare <i>E. coli</i> growth rates on cancerous liver tissue and healthy tissue.				
	[2]				
(v)	Some people think that the genetic engineering of certain organisms is unethical.				
	However, there are very few ethical concerns about the genetic engineering of bacteria such as <i>E. coli</i> .				
	Suggest why there are very few ethical concerns about the genetic engineering of E. coli.				
	[1]				