Materials - 2021/20 GCE Physics A Component 01

1. Nov/2021/Paper_H556_01/No.13

The force *F* against extension *x* graph for a material being stretched is shown.

What is best estimate for the energy stored in the material when the extension is 10 mm?

- **A** 0.07 J
- **B** 0.10J
- C 0.13J
- **D** 0.20 J

Your answer		[1]
-------------	--	-----

2. Nov/2020/Paper_H556_01/No.10

A spring is stretched by hanging on it a variable mass m. The mass m is always at rest. The spring obeys Hooke's law.

What is the relationship between the elastic potential energy E in the spring and the mass m?

- A $E \propto m^{-1}$
- B $E \propto m^{-2}$
- C E∝m
- **D** $E \propto m^2$

Your answer	[1]
-------------	-----

3. Nov/2020/Paper_H556_01/No.13

The Young modulus E of a metal can be determined using the expression $E = \frac{4F}{\varepsilon\pi d^2}$, where F is the tension in the wire, d is the diameter of the wire and ε is the strain of the wire.

Here is some data.

Quantity	Percentage uncertainty
F	5.3
ε	1.2
d	1.0

What is the percentage uncertainty in the calculated value of *E*?

- **A** 2.1%
- **B** 6.4%
- C 7.5%
- **D** 8.5%

Your answer	[1]

4. Nov/2020/Paper_H556_01/No.16(e)

(e) The steel tow bar used to pull the car has length $0.50\,\mathrm{m}$ and diameter $1.2\times10^{-2}\,\mathrm{m}$. The Young modulus of steel is $2.0\times10^{11}\,\mathrm{Pa}$.

Calculate the extension \boldsymbol{x} of the tow bar as the car travels up the slope.

x = m [3]

- **5.** Nov/2021/Paper_H556_03/No.1b(ii)
 - (b) The overhead cable in Fig. 1 must be tensioned. It is constructed from several equal lengths of wire.

Some data for one length of this wire are shown below.

- length = 1500 m
- area of cross-section = 1.1 × 10⁻⁴ m²
- resistivity = $1.8 \times 10^{-8} \Omega \text{ m}$
- the Young modulus = $1.2 \times 10^{10} Pa$
- strain = 1.3%
- (ii) Calculate the tension T in one length of wire.