Matter – 2021/20 GCSE Gateway Physics A

1.		v/2021/Paper_J249/01/No.5 /hich of the following is an example of a chemical change?					
	Α	Burning					
	В	Evaporating					
	С	Melting					
	D	Sublimating					
	You	ir answer	[1]				
2.		/2021/Paper_J249/01/No.7 ich statement explains why the atomic model has changed over time?					
	Α	Models can explain different situations.					
	В	Models can only be used for a limited time period.					
	С	New information is discovered.					
	D	Scientists are paid to keep changing models.					
	Υοι	ur answer	[1]				
3.		/2021/Paper_J249/01/No.13 eacher evaporates 50 g of water. They collect all of the steam and condense it back into water	er.				
	Wh	ich statement is true?					
	Α	The mass of the steam produced is less than 50 g.					
	В	The mass of the steam produced is more than 50 g.					
	С	The mass of the water at the end is 50 g.					
	D	The mass of the water at the end is less than 50 g.					
	You	ir answer	[1]				

	4.	Nov	/2021	/Paper_	J249	/01	/No.15
--	----	-----	-------	---------	------	-----	--------

The specific latent heat of fusion for lead is $24\,500\,\mathrm{J/kg}$.

Calculate the thermal energy required for 0.2kg of lead to melt.

Use an equation from the data sheet to help you.

- **A** 2450 J
- **B** 4900 J
- C 12250J
- **D** 122500 J

Your answer	[1]
-------------	-----

Nov/2021/Paper J249/01/N	No.18
--	-------

This question is about gas pressure.

(a) Complete each sentence to explain how temperature affects the pressure of a gas.

You can use each word once, more than once, or not at all.

area	distance	energy	pressure	speed			
When the temperature of a gas increases, the particles have a greater average							
and a greater average							
The particles now collide more often with the sides of the container. More frequent collisions							
over a fixed are	ea produce a greate	er			[3]		

(b) A student investigates how pressure and volume are linked for a gas at a fixed temperature.

Their results are shown in Table 18.1.

Pressure (kPa)	Volume (cm ³)
200	50
250	40
400	25
1000	10

Table 18.1

	The student suggests that pressure × volume = constant
	Use the data in Table 18.1 to work out if the student is correct.
	[3]
(c)	Explain why atmospheric pressure decreases with height above the surface of the Earth.
	[1]

6. Nov/2021/Paper_J249/01/No.20

A group of students want to determine the density of two small objects, A and B.

A is a regular cube made of iron and B is an irregular-shaped object made of copper.

Α

В

Describe the methods that the students would use to determine the density of iron and copper.

In your answer include:

•	Equipment	and	equations	that they	would	use.

How they would make sure that their results are accurate and precise.	
	[6]

7.	Nov/2021/Paper_J249/02/No.11 A student calculates the change in the thermal energy of a 1 kg metal block.								
	The student heats the block and measures the change in temperature.								
	What other quantity is needed?								
	A Density of the metal								
	B Resistance of the metal block								
	C Specific heat capacity of the metal								
	D Volume of the metal block								
	Your answer	[1]							
8.	Nov/2020/Paper_J249/01/No.1 What is the typical size for a small molecule?								
	A 0.1 cm								
	B 0.1 km								
	C 0.1 m								
	D 0.1 nm								
	Your answer	[1]							
9.	Nov/2020/Paper_J249/01/No.15 Energy is needed to change ice into water.								
	Calculate the energy needed to change 5kg of ice into water.								
	Use an equation from the data sheet to help you.								
	Specific latent heat of melting = $3.34 \times 10^5 \text{ J/kg}$.								
	A 16.7 J								
	B 1670 J								
	C 1670000J								
	D 1670000000J								

Your answer

[1]

10. N	Jov/	/2020	/Paper	1249	/01	/No.	16
	101 /	2020	, i upci	ュニマン	/ O ±	, , , , , ,	

(a)	Complete	the	sentences	about	an	atom	
(a)	Complete	une	sentences	about	an	atom.	

Use words from the list.

You may use each word once, more than once, or not at all.

	Atom	Electrons	Negatively	Neutrons
	Nucleus	Orbits	Positively	Protons
	An atom has a charged electrons.	C	charged nucleus surrour	nded by
		ns protons and		
		•	e	
(b)	(i) A swimming po	ool contains 9970 kg o	of water in 10 m ³ .	
	Calculate the c	lensity of water.		
	Use the equati	on: density = mass ÷	volume	
			Density =	kg/m ³ [2]
(ii)	The diagrams, A, E	and C, show the part	ticles in three states of m	atter.
	0 0	0000 00000 0000 0000 0000		
	Α	В	С	
	Write the letters in dense.	the boxes to give the	e correct order of densit	ty, from most to least
	Most dense ——		— ► Least dense	
				[1]
(iii)	Explain why you ch	nose the order in (b)(ii)).	
				F41

11. Nov/2020/Paper_J249/01/No.18

A student investigates the link between the volume and pressure of a gas. The student uses a fixed mass of gas in a closed container. The student plots a graph of the results.

(a) The student thinks that pressure multiplied by volume is always equal to the same number.

Explain why the student is correct.

Use	data	from	the	graph	to	support	vour	answer.

/h\	Complete	the sentences	to evolain	how volume	and n	raccura are	hatelar a
(N)	COMPLETE		to explain	HOW VOIGHIE	and p	i cooui c ai c	, i cialcu.

Use words from the list.

You can use each word once, more than once, or not at all.

doubled halved the same

If the volume of a gas is halved, the number of collisions per second between the gas

particles and the container is

The pressure is

[2]

(c) The student then investigates how temperature and pressure of a gas are linked. The student measures the pressure of a gas as its temperature increases. The results are plotted on a graph.

Explain how temperature and pressure are linked.

Use the graph to support your answer.

.....[

			ocrsoivedexampapers.co.uk			
12.	Nov	/2021	./Paper_J249/03/No.18			
			nt heats 0.20 kg of water in a beaker until it evaporates into steam. The starting temperature ater is 20 °C.			
	(a)	(i)	The specific heat capacity of water is 4200 J/kg °C.			
	Calculate the energy needed to raise the temperature of the water to 100 °C.					
			Use an equation from the data sheet to help you.			
			Energy needed = J [2]			
(ii) The specific latent heat of vaporisation of water is 2260 000 J/kg.						
Calculate the energy needed to turn all the water at 100 °C into steam.						
Use an equation from the data sheet to help you.						
			Energy needed =			
		(iii)	Use your answers from (a)(i) and (a)(ii) to calculate the total energy needed to turn 0.20 kg of water at 20 °C into steam at 100 °C.			
			Write your answer in standard form and to 2 significant figures.			

(b) (i)	Suggest two reasons why the actual energy needed to turn the water into steam was more than the value calculated in (a)(iii) .
	Reason 1
	Reason 2
	[2]
(ii)	Another student says, 'You should repeat your experiment three times and calculate a mean.'
	Suggest one advantage of repeating an experiment.
	[1]

	13. N	lov/2021,	/Paper	J249/0:	3/No.23
--	-------	-----------	--------	---------	---------

(a)	The ai	ir in a	car tyre	has a	pressure	of 200 kPa.
(a)	THE A	шша	cai tyre	illas a	piessuie	UI ZUU KFa.

	A driver notices that after a long journey the pressure in the tyre has increased. They think this is because the temperature of the tyre has increased.
	Explain, in terms of molecules, why the pressure in the tyre has increased.
	[4]
(b)	A student writes down a simple model of the Earth's atmosphere.
	Simple model of the Earth's atmosphere
	The atmosphere is a single layer of gas that covers the Earth.
	The density of the air is uniform.
	The thickness of the atmosphere is large compared to the diameter of the Earth.
	The student has made one mistake in their work.
	Identify the wrong word the student used and write the correct word needed to replace it.
	Wrong word:
	Correct words

[2]

14. Nov/2020/Paper_J249/03/No.10

15.

Your answer

A student investigates what happens when she heats a beaker of water.

	The temperature increases	The state changes	The energy stored in the water changes
Α	✓	✓	✓
В	✓	×	Х
С	Х	✓	Х
D	Х	Х	✓

'	ויי	^	^	✓	
Wh	ich ro	v in the table describe	s what could happen w	hen the water is heated?	
Υοι	ur ansv	ver			[1]
		Paper_J249/03/No.14 e change in pressure v	hen a diver moves from	a depth of 3.0 m to a depth o	f 8.0 m?
Ass	sume g	ravitational field streng	th on Earth = 10 N/kg an	d water density = 1000 kg/m	3.
Use	e an ed	uation from the data s	neet to help you.		
Α	3000	0 Pa			
В	5000	0 Pa			
С	8000	0 Pa			
D	1100	00 Pa			

[1]

16.	Nov	/2020	/Paper_	J249	/03	/No.20

- (a) A student uses a ruler to determine the volume of a cube, A. The length of one side of the cube is 0.100 m.
 - (i) Calculate the volume of cube A.

(ii) Cube B has the same volume as cube A.

The mass of cube **B** is ten times greater than the mass of cube **A**.

Compare the density of cube B with cube A.

Use the equation for density to help your explanation.

......[2

(b) A student researches how the density of air varies with the temperature of the air. Look at the graph of her findings.

Temperature (°C)

Describe the relationship between the temperature and density of air shown in the graph.

......[1]

(c)	Give one reason why a solid is more dense than a gas.
	[1]
(d)	A boat can be made out of concrete.
	Explain why a concrete boat floats but a lump of concrete sinks.
	rea

17. Nov/2020/Paper_J249/03/No.23

The table shows the specific heat capacities of different materials.

Material	Specific heat capacity (J/kg°C)
Copper	330
Brass	380
Zinc	385
Nickel	440
Concrete	880
Aluminium	913

A scientist heats an unknown substance from a solid to a liquid.

The graph shows how the temperature of the substance varies with time.

The scientist has 2.5 kg of the substance and records that it takes 462 kJ or	f energy to increase it
from the lowest to the highest temperature in the liquid state.	

11 011	if the lowest to the highest temperature in the liquid state.
(a)	Use the graph to calculate the specific heat capacity of the substance.
	Suggest what material it could be from the table.
	Specific heat capacity =
	Material =
	[5]
(b)	Suggest two reasons why the scientist cannot be certain that the substance has been identified correctly.
	1

[2]