
Monitoring chemical reactions – 2021/20 GCSE Gateway Chemistry A

1. Nov/2021/Paper_J248/02/No.4

Look at the diagram of a titration experiment.

What is the name of apparatus X?

- A Burette
- **B** Conical flask
- C Gas syringe
- **D** Pipette

Your answer	[1]
-------------	-----

2. Nov/2021/Paper_J248/02/No.13

Look at the results of a titration experiment.

	Titration 1 (rough)	Titration 2	Titration 3	Titration 4
Volume of acid used (cm ³)	26.00	25.20	25.50	25.60

What is the accurate average volume of acid used in the titration?

- **A** 25.35 cm³
- **B** 25.43 cm³
- C 25.55 cm³
- **D** 25.58 cm³

	3.	Nov/202	1/Paper	J248/0	02/No.19	9(d
--	----	---------	---------	--------	----------	-----

(d) The student made 0.073g of carbon dioxide in their experiment.

They predicted that they should have made 0.088 g.

Calculate the percentage yield.

Give your answer to 2 significant figures.

Percentage yield = % [3]

4. Nov/2021/Paper_J248/02/No.21(d)

(d) Ethanol, C_2H_5OH , can be dehydrated to make ethene, C_2H_4 .

$$C_2H_5OH \rightarrow C_2H_4 + H_2O$$

Calculate the atom economy for the production of ethene from ethanol.

(The relative formula mass, $M_{\rm r}$, of ${\rm C_2H_5OH}$ is 46.0 and of ${\rm C_2H_4}$ is 28.0).

Atom economy = % [2]

5. Nov/2020/Paper_J248/02/No.15

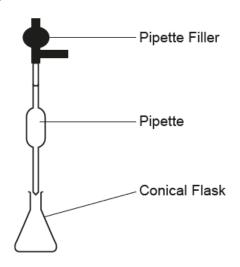
Hydrogen gas, H_2 , reacts with oxygen gas, O_2 , to make water, H_2O .

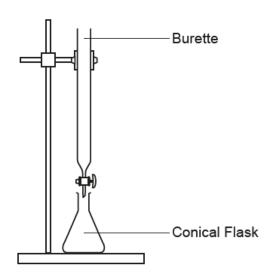
$$\rm 2H_2 + O_2 \rightarrow 2H_2O$$

What is the atom economy for this reaction?

$$M_{\rm r}$$
: $H_2 = 2$, $O_2 = 32$, $H_2O = 18$.

- **A** 50%
- **B** 53%
- **C** 89%
- **D** 100%


Your answer		[1]
-------------	--	-----


6. Nov/2020/Paper J248/02/No.20

A student neutralises an alkali with an acid in a titration experiment.

(a) Complete the word equation for the reaction of an acid with an alkali.

(b) Look at the student's method for her experiment.

- Measure 25.0 cm³ of alkali solution into a conical flask using a pipette.
- · Add a few drops of universal indicator to the alkali solution.
- Fill the burette to above the 0.0 cm³ line with acid.
- · Quickly add the acid to alkali until the indicator changes colour.
- · Repeat the experiment until consistent results are obtained.

Describe and explain one improvement the student should make to her method to accurate titration result.	get a more
	12

(c) The student repeats the experiment three times.

Look at the student's results.

Titration number	1	2	3
Volume of acid (cm ³)	25.75	23.60	23.70

Calculate the accurate volume of the acid that reacts with the alkali.

Accurate volume of acid = cm³ [2]

7. Nov/2021/Paper_J248/04/No.5

A scientist predicts that they should make 96 tonnes of product in a reaction.

They only actually make 81 tonnes of product.

What is the percentage yield?

- **A** 15%
- **B** 19%
- C 84%
- **D** 119%

Your answer [1]

8.	Nov/2021	/Paper	J248/04	/No.7
----	----------	--------	---------	-------

The concentration of a solution of sodium hydroxide, NaOH, is 0.725 mol/dm³.

What is the concentration of this solution in g/dm3?

(The relative atomic mass, A_r , of H is 1.0, of Na is 23.0 and of O is 16.0).

- **A** $0.018 \, \text{g/dm}^3$
- **B** 29.0 g/dm³
- C 55.2g/dm³
- **D** 725.0 g/dm³

our answer		[1]
------------	--	-----

9. Nov/2021/Paper_J248/04/No.16(d)

(d) Ethanol, C_2H_5OH , can be dehydrated to make ethene, C_2H_4 .

$$\mathrm{C_2H_5OH} \rightarrow \mathrm{C_2H_4} + \mathrm{H_2O}$$

Calculate the atom economy for the production of ethene from ethanol.

(The relative formula mass, $M_{\rm r}$, of ${\rm C_2H_5OH}$ is 46.0 and of ${\rm C_2H_4}$ is 28.0).

Atom economy = % [2]

10.	Nov	/2021/	/Paper	J248	/04/	/No.22(a
-----	-----	--------	--------	------	------	---------	---

A company makes hydrogen iodide, HI, gas by reacting hydrogen gas with iodine gas.

Look at the equation for the reaction.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

(a) (i) What is the volume of hydrogen gas, in dm³, needed to react with 150 dm³ iodine at room temperature and pressure?

Use the balanced symbol equation to help you.

(ii) Calculate the volume of hydrogen iodide formed, in dm³, when 150 dm³ of iodine completely reacts with hydrogen at room temperature and pressure.

Use the balanced symbol equation to help you.

(iii) Calculate the mass, in kilograms, of 150 dm³ of iodine at room temperature and pressure.

One mole of any gas occupies 24 dm³.

Give your answer to 1 decimal place.

(The relative molecular mass, $M_{\rm r}$, of ${\rm I_2}$ is 253.8).

11. Nov/2020/Paper_J248/03/No.12

Sodium hydroxide reacts with hydrochloric acid. Sodium chloride and water are made.

$$NaOH + HCl \rightarrow NaCl + H_2O$$

What mass of sodium hydroxide would be needed to make 46.8 g of sodium chloride?

- **A** 16g
- **B** 32g
- **C** 50 g
- **D** 64 g

Your answer [1]

12. Nov/2020/Paper_J248/04/No.2

Hydrogen gas, H₂, reacts with oxygen gas, O₂, to make water, H₂O.

$$2H_2 + O_2 \rightarrow 2H_2O$$

What is the atom economy for this reaction?

$$M_r$$
: $H_2 = 2$, $O_2 = 32$, $H_2O = 18$

- **A** 50%
- **B** 53%
- C 89%
- **D** 100%

Your answer [1]

13. Nov/2020/Paper_J248/04/No.8

In the Haber process, nitrogen reacts with hydrogen to make ammonia.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

What is the maximum volume of ammonia, NH₃, that can be made from 150 cm³ of hydrogen, H₂?

- **A** 50 cm³
- **B** 100 cm³
- C 225 cm³
- **D** 450 cm³

Your answer
Your answer

14. Nov/2020/Paper J248/04/No.12

Which is the correct expression for calculating the concentration of a solution in g/dm³?

- A Concentration = $\frac{\text{volume of solution in dm}^3}{\text{mass of solute in g}}$
- B Concentration = $\frac{\text{amount of solute in mol}}{\text{mass of solute in g}}$
- C Concentration = $\frac{\text{mass of solute in g}}{\text{volume of solution in cm}^3 \times 1000}$
- D Concentration = $\frac{\text{mass of solute in g}}{\text{volume of solution in dm}^3}$

Your answer [1]

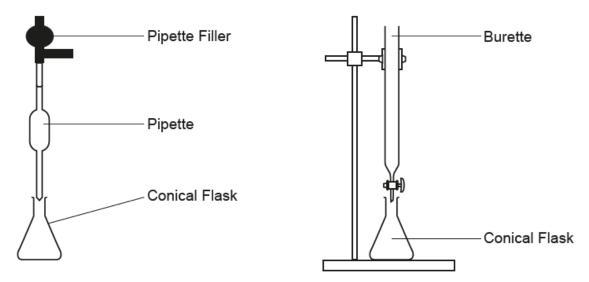
ocrsolvedexampapers.co.uk

15. Nov/2020/Paper_J24	18/04/No.17(c ii)
------------------------	------------------	---

(ii) A student makes some ammonium nitrate in the laboratory.

He predicts that he should make 12.5g of ammonium nitrate.

His percentage yield is 80%.


Calculate the actual mass of ammonium nitrate that the student makes.

Actual mass of ammonium nitrate = g [2]

16. Nov/2020/Paper J248/04/No.21

A student neutralises potassium hydroxide with dilute sulfuric acid in a titration experiment.

(a) Look at the student's method for her experiment.

- Measure 25.0 cm³ of 0.200 mol/dm³ potassium hydroxide into a conical flask using a pipette.
- · Add a few drops of universal indicator to the potassium hydroxide.
- Fill the burette to above the 0.00 cm³ line with dilute sulfuric acid.
- Quickly add the dilute sulfuric acid to the potassium hydroxide until the indicator changes colour.
- · Repeat the experiment.

Describe and explain one improvement the student should make to her method to get a more accurate titration result.
[2]

(b) The student repeats the experiment four times.

Look at the student's results.

Titration number	1	2	3	4
Volume of acid (cm ³)	25.75	23.60	23.70	23.65

(i) Calculate the accurate volume of the acid that reacts with the alkali.

Accurate volume of acid = cm³ [2]

(ii) Look at the equation for the reaction between sulfuric acid and potassium hydroxide.

$$H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$$

Use your answer from part **(b)(i)** to calculate the concentration of the dilute sulfuric acid, H_2SO_4 , that reacted with the $25.0\,\mathrm{cm}^3$ of $0.200\,\mathrm{mol/dm}^3$ potassium hydroxide.

Give your answer to 3 significant figures.