Newton's laws of motion and momentum – 2021/20 GCE Physics A Component 01

1. Nov/2020/Paper_H556_01/No.16

A student wants to determine the value of the acceleration of freefall g.

(a) The diagram below shows part of the arrangement which the student used.

A steel ball is dropped from an electromagnet. The ball falls vertically. The ball hits a trapdoor and opens the trapdoor.

The ball travels a distance s from the bottom of the electromagnet to the trapdoor in a time t. The student uses the equation $s = \frac{1}{2} gt^2$ to determine g.

(i) Show that the equation $s = \frac{1}{2}gt^2$ is homogeneous, with both sides of the equation having the same base units.

[2]

(ii)	Describe how the student could use standard laboratory equipment to take accurate measurements of the distance s and the time t .

(b) The trapdoor falls downwards when the ball hits it. The ball collides elastically with the trapdoor with a speed of 4.4 m s⁻¹.

The graph of force acting on the ball against time is shown below.

The mass of the ball is 0.050 kg.

(i) Calculate the initial momentum p_1 of the ball just before it hits the trapdoor.

$$p_1 = \dots kg \, m \, s^{-1} \, [1]$$

(ii) Use the graph to calculate the magnitude of the final momentum p_2 of the ball immediately after the collision.

$$\rho_2$$
 = kg m s⁻¹ [3]

(iii) The mass of the trapdoor is 100 g.

Calculate the final speed \emph{v} of the trapdoor immediately after the collision.

$$v = \dots ms^{-1}$$
 [2]

2.	Nov	/2020	/Paper	H556	01	/No.21(b
----	-----	-------	--------	------	----	---------	---

- (b) The temperature of the kiln is 1300 °C.
 A single atom of argon is travelling horizontally towards the vertical side X of the chamber.
 The initial speed of this atom is 990 m s⁻¹. After collision, it rebounds at the same speed.
 - (i) Calculate the change in momentum Δp of this atom.
 - mass of argon atom = 6.6×10^{-26} kg

$\Delta p =$		kg m s ⁻¹	[2]
--------------	--	----------------------	-----

- (ii) Assume that this atom does not collide with any other argon atoms inside the chamber. Instead, it travels horizontally, making repeated collisions with the opposite vertical walls of the chamber.
 - 1 Show that the atom makes about 1000 collisions with side **X** in a time interval of 1.0 s.

2 Calculate the average force *F* on side **X** made by the atom.

[1]

(iii) Without calculation, explain how your answer to (ii)2 could be used to estimate the total pressure exerted by the atoms of the argon gas in the kiln.

.....[2

3. Nov/2020/Paper_H556_03/No.6(c_ d)

A beam of α -particles is incident on a thin gold foil. Most α -particles pass straight through the foil. A few are deflected by gold nuclei.

The diagram shows the path of one α -particle which passes close to a gold nucleus **N** in the foil. The α -particle is deflected through an angle of 60° as it travels from **A** to **B**.

P marks its position of closest approach to the gold nucleus.

ocrsolvedexampapers.co.uk

(c)	The initial kinetic energy of each α -particle is 5.0 MeV.	
	Show that the magnitude of the initial momentum of each α -particle is about $10^{-19}\mathrm{kg}\mathrm{m}\mathrm{s}^{-1}$. Take the mass of the α -particle to be 6.6 × $10^{-27}\mathrm{kg}$.	
		3]
(d)	The magnitude of the final momentum of the α -particle at B is equal to its initial value at A .	
	The gold nucleus ${\bf N}$ is initially at rest. During the passage of the α -particle from ${\bf A}$ to ${\bf B}$, nother forces act on the two particles.	0
	In the following questions label any relevant angles.	
	(i) Draw two vectors in the spaces below to represent the initial momentum and the final momentum of the α -particle.	al
	initial momentum at A	
	final momentum at B	
	rs	2]
	l'	-1

ocrsolvedexampapers.co.uk

	our solved example to see an
(ii)	Draw a vector in the space below to represent the momentum of the nucleus ${\bf N}$ when the α -particle reaches ${\bf B}$.
	Explain how you determined this momentum.
	[2]