Nuclear and Particle Physics – 2021/20 GCE Physics A Component 02

1. Nov/2021/Paper_H556_02/No.13

2.

The medical tracer fluorine-18 is used in positron emission tomography (PET). Fluorine-18 is a beta-plus emitter with a short half-life.						
Describe how the fluorine-18 nuclei are located in a patient using a PET scanner.						
				••••••		
						[4]
A r	adiation det e count-rate		in front of a be and recorded ev	ta-emitting sour very 10 minutes		
31	1 s ⁻¹	$309\mathrm{s}^{-1}$	299 s ⁻¹	$307 \mathrm{s}^{-1}$	321 s ⁻¹	
Wh	nat term car	n be used to des	scribe the data	shown?		
Α	exponent	ial				
В	linear					
С	random					
D	spontane	ous				
Yo	ur answer					[1]

3.	Nov/2	2021/Paper_H556_02/No.23
	(a)	Explain the function of the control rods and the moderator in a nuclear fission reactor.
		[2]
	(b)*	Some nuclear fission reactors use uranium-235 as fuel. In the future, there is possibility of using hydrogen-2 as fuel in fusion reactors.
		Here is some information and data on fission and fusion reactions.

	Fission reactor	Fusion reactor
Typical reaction	$^{1}_{0}$ n + $^{235}_{92}$ U \rightarrow $^{144}_{56}$ Ba + $^{89}_{36}$ Kr + $^{1}_{0}$ n	$_{1}^{2}H + _{1}^{2}H \longrightarrow _{1}^{3}H + _{1}^{1}H$
Approximate energy produced in each reaction	200 MeV	4 MeV
Molar mass of fuel material	uranium-235: 0.235 kg mol ⁻¹	hydrogen-2: 0.002 kg mol ⁻¹

•	Describe the	similarities	and the	differences	between	fission	and f	usion	reactions
---	--------------	--------------	---------	-------------	---------	---------	-------	-------	-----------

Explain with the help of calculations, which fuel produces more energy per kilogram.	[6]

ocrsolved exampapers.co.uk
Additional answer space if required

4. Nov/2021/Paper_H556_02/No.25

(a) A researcher is doing an experiment on a radioactive solution in a thin glass tube. The solution has two radioactive materials **X** and **Y**.

The table below shows some data on these two materials.

	Material X	Material Y
Half-life	10 minutes	10 hours
Particles emitted	Alpha	Beta-minus
Daughter nuclei	Stable	Stable

The solution has the same number of nuclei of **X** and **Y** at the start.

(1)	State and explain which material has the greatest activity at the start.	
		[41
(ii)	State why it is dangerous for the researcher to handle the test tube with bare hands.	

(b) Carbon-14 (\$^16_6\$C) is produced in the upper atmosphere of the Earth by collisions between nitrogen nuclei and fast-moving neutrons.

The nuclear transformation equation below shows the formation of a single carbon-14 nucleus.

.....[1]

$$^{14}_{7}N + ^{1}_{0}n \rightarrow ^{14}_{6}C + X$$

(i) State the proton number of particle X.

- (ii) Use the data below to determine the binding energy per nucleon of the ${}^{14}_{6}\text{C}$ nucleus. Write your answer to 3 significant figures.
 - mass of neutron = $1.675 \times 10^{-27} \text{kg}$
 - mass of proton = 1.673 × 10⁻²⁷ kg
 - mass of ¹⁴₆C nucleus = 14.000 u
 - $1u = 1.66 \times 10^{-27} \text{kg}$

binding energy per nucleon = J per nucleon [4]

5. Nov/2020/Paper_H556_02/No.9

A student is modelling the decay of a radioactive source using the equation $\Delta N/\Delta t = -0.5 N$. The student decides to use $\Delta t = 0.10 \, \text{s}$.

The number N of radioactive nuclei is 2000 at t = 0.

Part of the modelling spreadsheet from the student is shown below.

t/s	Number N of radioactive nuclei remaining at time t	Number of nuclei decaying in the next 0.10 s
0	2000	100
0.10	1900	
0.20		
0.30		

Wh	at is the value	e of <i>N</i> at $t = 0.30 \text{s}$?		
Α	1700			
В	1710			
С	1715			
D	1805			
Υοι	ır answer			[1]

6. Nov/2020/Paper_H556_02/No.10

The total energy released in a single fusion reaction is 4.0 MeV.

What is the change in mass in this fusion reaction?

- **A** $7.1 \times 10^{-36} \text{kg}$
- **B** 7.1×10^{-30} kg
- **C** $2.1 \times 10^{-21} \text{kg}$
- **D** $4.4 \times 10^{-17} \text{kg}$

Your answer	[1]
-------------	-----

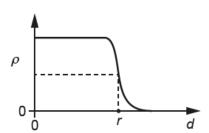
7. Nov/2020/Paper_H556_02/No.12

The table below shows the quark compositions of four particles A, B, C and D.

Α	В	С	D
u u d	u d d	u d s	sss

Which particle has a positive charge?

Your answer [1]


Q	Nov	/วกวก	/Paper	H556	02	/No 21
u.	INUV	/ 2020	/rapei	пээо	UZI	INO.ZI

(a)		he 1800s, the atom was considered to be a fundamental particle. It was an indivisible ticle of matter. Modern physics shows that this idea is not correct.
		scribe the fundamental particles within an atom of carbon-14 ($^{14}_{6}$ C). our answer state the composition of the hadrons.
(b)		half-life of the isotope carbon-14 is 5700 years (y).
(1)	(i)	Show that the decay constant λ for this isotope is about 1.2 × 10 ⁻⁴ y ⁻¹ .
	(1)	Show that the decay constant x for this isotope is about 1.2 ~ 10 y .
		[1]
	(ii)	Carbon-dating is a technique used to date an ancient wooden axe.
	. ,	The ratio of carbon-14 to carbon-12 in the axe material is 78% of the current ratio of carbon-14 to carbon-12 in a living tree.
		Calculate the age in years of the wooden axe.
		age = y [3]

(iii) State one assumption made in the calculation in (ii).

[41]

(c)* A graph of the density ρ of a nucleus against distance d from the centre of the nucleus is shown below.

The radius of the nucleus r is taken as the distance d where the density is half the maximum density.

Fig. 21.1 shows the density ρ variation for three different nuclei and **Table 21.1** shows the nucleon number A of each nucleus.

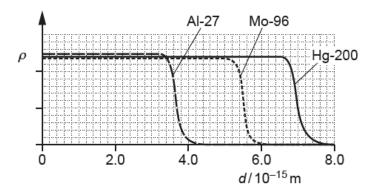


Fig. 21.1

Nucleus	Nucleon number A
Al-27	27
Mo-96	96
Hg-200	200

Table 21.1

Use the information provided opposite to describe how the density of a nucleus depends on its nucleon number A show numerically that $r \propto A^{1/3}$ estimate the mean density of the nuclei. [6] Additional answer space if required

Nov/2021/Paper_H556_03/No.3(c	9.	Nov/2021	/Paper	H556	03/	/No.3(c
---	----	----------	--------	------	-----	--------	---

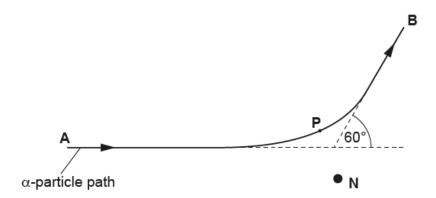
(c)	The power source for the instrumentation on board the space probe is plutonium-238,	which
	provides 470 W initially.	

Plutonium-238 decays by α -particle emission with a half-life of 88 years. The kinetic energy of each α -particle is 8.8 × 10⁻¹³ J.

(i) Calculate the number N of plutonium-238 nuclei needed to provide the power of 470 W.

N =[3]

(ii) Calculate the power P still available from the plutonium-238 source 100 years later.


P = W [3]

10. Nov/2020/Paper_H556_03/No.6(a, b)

A beam of α -particles is incident on a thin gold foil. Most α -particles pass straight through the foil. A few are deflected by gold nuclei.

The diagram shows the path of one α -particle which passes close to a gold nucleus **N** in the foil. The α -particle is deflected through an angle of 60° as it travels from **A** to **B**.

P marks its position of closest approach to the gold nucleus.

(a)	Another α -particle	in the l	beam is	deflected	by the	same	gold	nucleus	Ν	through	an	angle
	of 30°.											

Sketch its path onto the diagram above.

[2]

(b) The distance between **P** and **N** is 6.8×10^{-14} m.

Calculate the magnitude of the electrostatic force F between the α -particle (4_2 He) and the gold nucleus ($^{197}_{79}$ Au) when the α -particle is at **P**.

F = N [4]