Number Theory - 2021/20 GCE AS Additional Pure Further Mathematics A

1. Nov/2021/Paper_Y535/01/No.4

- (a) Let a = 1071 and b = 67.
 - (i) Find the unique integers q and r such that a = bq + r, where q > 0 and $0 \le r < b$. [1]
 - (ii) Hence express the answer to (a)(i) in the form of a linear congruence modulo b. [1]
- (b) Use the fact that $358 \times 715 239 \times 1071 = 1$ to prove that 715 and 1071 are co-prime. [4]

- 2. Nov/2021/Paper_Y535/01/No.7
 - (a) Let $f(n) = 2^{4n+3} + 3^{3n+1}$.

Use arithmetic modulo 11 to prove that $f(n) \equiv 0 \pmod{11}$ for all integers $n \ge 0$. [4]

(b) Use the standard test for divisibility by 11 to prove the following statements.

(i)	$10^{33} + 1$ is divisible by 11	[2]
-----	----------------------------------	-----

(ii) $10^{33} + 1$ is divisible by 121 [4]

3.	Nov/2020/Paper_Y535/01/No.1	
	(a) Evaluate 13×19 modulo 31.	[1]
	(b) Solve the linear congruence $13x \equiv 9 \pmod{31}$.	[3]

4. Nov/2020/Paper_Y535/01/No.3

In this question, N is the number 26132652.

(a) Without dividing N by 13, explain why 13 is a factor of N .	[1]
(b) Use standard divisibility tests to show that 36 is a factor of N.	[3]

It is given that $N = 36 \times 725907$.

(c) Use the results of parts (a) and (b) to deduce that 13 is a factor of 725 907. [2]