Radioactive materials - 2021/20 GCSE 21st Physics B

1. Nov 2021/Paper_J259/01/No.11

Some types of nut are slightly radioactive. They emit alpha radiation.

Amaya uses a radiation detector to measure the radiation given out by some nuts.

(a) Li comments that there is a problem with Amaya's experiment.

This experiment is not valid. You cannot be confident that the radiation you detect is coming from the nuts.

	Suggest now to solve this problem.
	[1]
(b)	Explain how Amaya could find out if the radiation that she detects is alpha radiation.
	[2]

2. Nov 2021/Paper_J259/02/No.7

The properties of some radioactive isotopes are shown in the table.

Radioactive isotope	Type of radiation emitted	Half-life
Americium-214	Alpha	432 years
Bismuth-213	Alpha	46 minutes
Cobalt-60	Gamma	5.3 years
Technetium-99m	Gamma	6 hours

(a)	A patient is injected with a medical tracer. A medical tracer contains a radioactive isotope that emits radiation. This radiation is detected from outside the body to produce an image.
	Explain why technetium-99m is suitable for use as a medical tracer.
	Use data from the table in your answer.
	[2]
(b)	The radioactive medical tracer, technetium-99m, is prepared in the same room as the patient.
	Identify one precaution when preparing this medical tracer in the same room as the patient, and explain how this reduces the risk to the patient.
	Precaution
	Explanation
	[2]

ocrsolvedexampapers.co.uk

(c)	Radiotherapy is a treatment to kill cancerous cells carried out over several weeks. The radioactive isotope needs to produce a consistent beam of radiation over several weeks.
	Which radioactive isotope from the table is suitable to use for radiotherapy?
	Give one reason for your answer.
	Radioactive isotope
	Reason
	[2

ocrsolvedexampapers.co.uk

3. Nov 2020/Paper_J259/01/No.2

Kar	reem	researches nuclear fission and nuclear fusion.	
(a)	(i) Complete the sentence to explain what is meant by nuclear fission.		
		Put a ring around the correct answer.	
		Fission is when nuclei fuse / grow / shrink / split to form smaller nuclei.	[1]
	(ii)	Complete the sentence to explain what causes nuclear fission.	
		Put a ring around the correct answer.	
		Fission happens because some nuclei are negative / positive / unstable / stable .	[1]
(b)	Dur	ing nuclear fission , energy is released in two main forms.	
	Hov	w is the energy released?	
	Tick	(✓) two boxes.	
	Ela	stic potential energy of the new particles	
	Gar	mma radiation	
	Gra	vitational potential energy of the new particles	
	Kin	etic energy of the new particles	
	Rad	dio waves	
	Sou	und waves	
			[2]
(c)	(i)	Describe what happens during nuclear fusion .	
			[2]
	(ii)	During nuclear fusion some of the mass is lost.	
		What is this mass converted into?	
			[1]

4. Nov 2020/Paper J259/02/No.5

Nuclear Physicists use atomic numbers and mass numbers to identify isotopes.

The table shows data on three atoms, **Atom A**, **Atom B**, and **Atom C**.

	Atom A	Atom B	Atom C
Atomic number	6	6	
Mass number	12	14	14
Number of neutrons		8	7
Stable	Yes	No	Yes

(a) Complete the two missing values in the	table.
---	--------

[1]

(b) Isotopes of an element are atoms with the same number of protons but a different number of neutrons.

Which two atoms are isotopes of the same element?

Put a (ring) around the **two** correct answers.

Atom A

Atom B

Atom C

[1]

(c) Carbon-14 is an unstable isotope which decays to nitrogen-14.

$$^{14}_{6}C \rightarrow ^{14}_{7}N$$
 + Decay particle

What is the decay particle emitted when carbon-14 decays?

Put a (ring) around the correct answer.

Alpha particle Beta particle G

Gamma ray

Neutron

[1]

5. Nov 2020/Paper J259/03/No.9

Nuclear Physicists use atomic numbers and mass numbers to identify isotopes.

The table shows data on three atoms, **Atom A**, **Atom B**, and **Atom C**.

	Atom A	Atom B	Atom C
Atomic number	6	6	
Mass number	12	14	14
Number of neutrons		8	7
Stable	Yes	No	Yes

[1]

(b) Isotopes of an element are atoms with the same number of protons but a different number of neutrons.

Which two atoms are isotopes of the same element?

Put a (ring) around the **two** correct answers.

Atom A

Atom B

Atom C

[1]

(c) Carbon-14 is an unstable isotope which decays to nitrogen-14.

$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{Decay}_{particle}$$

What is the decay particle emitted when carbon-14 decays?

Put a (ring) around the correct answer.

Alpha particle Beta particle Gamma ray Neutron

[1]