Radioactivity - 2021/20 GCSE Gateway Physics Combined Science A

1. Nov/2021/Paper_J250/06/No.7

P, Q, R and S are isotopes.

 ${}_{2}^{4}P$ ${}_{3}^{6}Q$ ${}_{2}^{3}R$ ${}_{1}^{2}S$

Which two atoms are isotopes of the same element?

 $A \quad {}^4_2P \quad \text{and} \quad {}^3_2R$

 ${\tt B} \ {}^6_3{\tt Q} \ {\sf and} \ {}^3_2{\tt R}$

 $c \quad {}^3_2R \quad \text{ and } \quad {}^2_1S$

 $D \stackrel{4}{_{2}}P$ and $\stackrel{2}{_{1}}S$

Your answer [1]

2.	Nov	/2021	/Paper	J250	/06	/No.11

This question is about two radioactive isotopes, **X** and **Y**.

(a) Draw lines to connect each part of the atom with its correct description.

Part	t of the atom	Description	
E	Electrons		
		Usually found in the nucleus.	
١	Neutrons		_
		Unstable in radioactive isotopes.	
١	Nucleus		_
		Arranged in shells around the nucleus.	
F	Protons		
			[3]
Isot	ope X gives out gamma rays.		
(i)	The charge on the nucleus of	isotope X stays the same.	
	What happens to the mass nu	imber of the nucleus?	
			[1]
(ii)	Isotope X is stored safely in a	container.	
	Suggest a material for the cor	ntainer.	
			[41
_			[1]
Des	scribe how an object can be irra	adiated using isotope X.	
			[2]
	Isot (ii)	(ii) The charge on the nucleus of What happens to the mass nu (iii) Isotope X is stored safely in a Suggest a material for the cor Describe how an object can be irra	Usually found in the nucleus. Neutrons Unstable in radioactive isotopes. Nucleus Arranged in shells around the nucleus. Protons Isotope X gives out gamma rays. (i) The charge on the nucleus of isotope X stays the same. What happens to the mass number of the nucleus?

(d) Equal amounts of isotope Y are placed in a plastic box and in a cardboard box.

Table 11.1 gives information about both boxes.

	Plastic box	Cardboard box
Waterproof	yes	no
Material breaks easily	no	yes
Secure lid	yes	no

Table 11.1

(i)	Which box is best for storing isotope Y?		
	Give one reason for your answer using the information in Table 11.1.		
	[1]		
(ii)	The plastic box does not let any of the radiation emitted by isotope Y pass through it.		
	Which type of radiation does isotope Y emit?		
	[1]		

(e) The graph shows how the quantity of isotope Y changes with time.

(i) Complete Table 11.2 using the graph to help you.

Time (days)	Quantity of isotope Y (%)
5	
10	

Table 11.2

[1]

(ii) Explain why the half-life of isotope Y is 5 days.

3. Nov/2020/Paper_J250/06/No.3

Atoms contain protons, neutrons and electrons.

Which row in the table describes the nucleus?

	Nucleus contains	Charge on the nucleus
Α	Electrons and neutrons	Negative
В	Protons and electrons	Neutral
С	Protons and neutrons	Neutral
D	Protons and neutrons	Positive

Your answer		[1]
-------------	--	-----

4. Nov/2020/Paper_J250/06/No.12

(a) A scientist measures the activity of a radioactive isotope. She uses a Geiger-Muller tube connected to a counter.

Table 12.1 shows her results.

Measurement	Activity (Bq)
1	701
2	708
3	704
4	707

Table 12.1

(i) What is the mean activity of the isotope?

	Mean activity = Bq [1]
(ii)	Is there a pattern in the results in Table 12.1?
	Explain your answer using ideas about radioactivity.
	[2]

(b) (i) Carbon-12 is a stable isotope. Carbon-14 is an unstable radioactive isotope.

Table 12.2 shows the contents of each nucleus.

	Carbon-12	Carbon-14
Number of protons	6	6
Number of neutrons	6	8

Table 12.2

		0013011040	Admipaper steerak	
	(ii) This is the equ	ation for the radioa	ctive decay of carbon-14:	
	$^{14}_{6}\text{C} \rightarrow ^{14}_{6}$	⁴ N + ⁰ ₋₁ e		
	What happens	to the nuclear ma s	ss (mass number) when carbon-14 decays?	
			[1]	
(c)	Americium-241 is a	radioactive isotope	e used in smoke alarms.	
. ,	Americium-241 is a radioactive isotope used in smoke alarms. Table 12.3 shows how the activity of americium-241 changes.			
	Time (years)	Activity (Bq)		
	458	36 000		
	916	18000		
	1374	9000		
	Table	e 12.3		
	(i) What is meant	by the half-life of a	n isotope?	
			[1]	
	(ii) Use the data in	n Table 12.3 to calc	ulate the half-life of americium-241.	

Half-life = years [1]

(iii) This is a diagram of a smoke alarm.

Smoke enters the smoke alarm, which blocks the radiation emitted by the americium-241.

A smoke alarm company decides to use a different isotope.

Table 12.4 shows the three choices of isotope.

Isotope	Radiation emitted	Half-life (years)
Α	Alpha	2
В	Beta	400
С	Alpha	350

Table 12.4

Which isotope, A, B or C, is the best to use in a smoke alarm?				
Tick (✔) one box.				
A				
В				
c				
Explain your answer using the information in Table 12.4.				

Nov/2021/Paper_J250/12/No.
--

An atom of element X can be written like this:

²⁰₁₁**X**

What does an atom of element X contain?

- A 11 protons, 9 neutrons and 11 electrons
- B 11 protons, 11 neutrons and 11 electrons
- C 20 protons, 11 neutrons and 9 electrons
- D 20 protons, 11 neutrons and 20 electrons

Your answer		[1]
-------------	--	-----

6.	Nov	/2021	/Paper	J250	/12	/No.14

X and **Y** are radioactive isotopes. They emit either alpha particles or beta particles.

(a) Complete **Table 14.1** to show what happens to a **nucleus** of an atom when an alpha particle or a beta particle is emitted.

	Alpha particle emitted	Beta particle emitted
Change in mass of nucleus		0
Change in charge on nucleus	-2	

 (d) Isotope X only gives out beta particles. Isotope Y only gives out alpha particles.

The scientist measures the activity of one of the isotopes using a Geiger counter.

They then place a material between the isotope and the Geiger counter and record the reading.

Table 14.2 shows their results:

Material between isotope and Geiger counter	Reading on Geiger counter (Bq)
Paper	No change
Aluminium sheet	Decreases

	Table 14.2	
	Which isotope are they using?	
	Give two reasons for your answer.	
	Isotope:	
	1	
	2	
		[2]
(e)	The scientist accidentally places isotope X close to isotope Y .	
	Explain why isotope ${\bf Y}$ is irradiated, but ${\bf not}$ contaminated, by isotope ${\bf X}$.	
		[2]
(f)	Nuclear power is non-renewable and the plants can produce nuclear waste.	
	Suggest two reasons why some countries still use nuclear power.	
	1	
	2	

7. Nov/2020/Paper_J250/12/No.6

A radioactive isotope emits only gamma rays.

A teacher places different materials in front of the isotope. She measures the reading on a Geiger-Muller tube connected to a counter.

Which row in the table shows the correct reading on the counter?

	Reading on counter (Bq)				
	No material Cardboard 5 mm thick aluminium 10 cm thick leads 10 cm				
Α	0	20	40	60	
В	20	20	19	2	
С	20	3	2	2	
D	20	20	3	3	

	1	1	1
Your answer			[1]

_			
ጸ	Nov/2020/Paper	1250/12/	No 12
u.	INDV/ZUZU/Fabel	JZJU/ <u> </u>	INU. IZ

Carbon-12 is a stable isotope. Carbon-14 is an unstable radioactive isotope.

(a) Describe what is meant by the term isotope.

[1]

(b) This is the equation for the radioactive decay of carbon-14:

$${}^{14}_{6}\text{C} \longrightarrow {}^{14}_{7}\text{N} + {}^{0}_{-1}\text{e}$$

(i) Which type of radiation is emitted by carbon-14?

(ii) Describe how the mass and charge of the nucleus changes when the carbon-14 decays.

Mass

Charge[2]

(c) This is a diagram of energy levels inside a hydrogen atom.

Electromagnetic radiation can cause ionisation.

Explain what is meant by the term **ionisation**.

You may add to the diagram to help explain your answer.

(d) Carbon-14 can be used to date ancient objects.

For the ancient object, what is the ratio of t carbon-14 left?	he original amount of carbon-14 to the amount of
	Ratio =[3]

An ancient object is 17 100 years old. The half-life of carbon-14 is 5700 years.