Reaction rates and equilibrium (qualitative) – 2021/20 GCE AS Chemistry A

1. Nov/2021/Paper_H032/01/No.11

The Boltzmann distributions below show a gas at two different temperatures.

Which Boltzmann distribution shows the dotted curve at a higher temperature?

Your answer [1]

2.	Nov/2020	/Paper	H032	/01	/No.24(h)	
	1100/2020	// I apci	11032	<i>,</i> от	/ INO. 2 T(N)	

	ocrsolvedexampapers.co.uk
Nov/2	2020/Paper_H032/01/No.24(b)
(b)	The industrial manufacture of $\rm NH_3$ from $\rm N_2$ and $\rm H_2$ is carried out at an increased temperature and in the presence of a catalyst.
	Explain, using Boltzmann distributions, why increasing the temperature and using a catalyst both increase the reaction rate.
•••••	
•••••	

3. Nov/2021/Paper H032/02/No.6

A student investigates the rate of reaction between strontium and water.

$$Sr(s) + 2H2O(I) \rightarrow Sr(OH)2(aq) + H2(g)$$

The student's method is shown below.

- Pour 100 cm³ of water into a conical flask.
- Add 0.26g of strontium and quickly connect a 100 cm³ gas syringe.
- Measure the volume of gas produced every 10 seconds until all the strontium has reacted.

The student plots a graph of volume of gas produced against time as shown in Fig. 6.1.

Fig. 6.1

(a) Draw a best fit curve on Fig. 6.1.

Use the graph to determine the rate of reaction, in cm³ s⁻¹, at 50 s.

Show your working below and on the graph.

rate at 50 s cm³ s⁻¹ [3]

ocrsolvedexampapers.co.uk

(b)		econd student suggests that the experiment could be improved by measuring the loss in ss in the conical flask over time.						
		student places a conical flask containing 100 cm ³ of water on a 2 decimal place balance, then adds 0.26 g of strontium.						
	The	mass is recorded every 10 seconds.						
	_	uggest one advantage and one disadvantage of using this method compared to the gas ollection method.						
	Adv	Advantage:						
	Disa	advantage:						
		[2]						
(c)		aird student repeats the original experiment using the same amount, in moles, of barium strontium.						
	(i)	Calculate the mass of barium that the student uses.						
		Give your answer to 2 decimal places.						
		mass of barium = g [2]						
	(ii)	The student observes that the rate of reaction for barium is different from the rate of reaction with strontium.						
		On Fig. 6.1 sketch the graph the student would obtain using barium instead of strontium. [2]						
	(iii)	Describe and explain the difference in reactivity of barium and strontium with water.						
	(,	Describe and explain the difference in reactivity of bandin and strontain with water.						
		[4]						