Transport in plants - 2021/20 GCE AS Biology A

1. Nov/2021/Paper-H020/01/No.5

The rate of transpiration of water can be estimated by recording the rate of water uptake using a potometer. Two potometers were set up, one with large leaves and one with small leaves. A calibrated capillary tube that had a diameter of 1 mm was used to introduce the bubble.

Which of the options, **A** to **D**, shows the most appropriate units to compare the rate of transpiration of large leaves compared to small leaves?

- A $mm^2 cm^{-1} min^{-1}$
- B mm³ cm⁻¹ min
- C mm² cm⁻² min⁻¹
- $D \text{ mm}^3 \text{ cm}^{-2} \text{ min}^{-1}$

Your answer		[1]
-------------	--	-----

2. Nov/2021/Paper-H020/01/No.10

The image below shows a transverse section of a stem vascular bundle of a sunflower, *Helianthus annuus*.

Which of the options, A to D, labels the xylem vessels?

Your answer [1]

3. Nov/2020/Paper-H020/01/No.24

A student was comparing transpiration rates in tomato leaves and watermelon leaves. They selected eight separate leaves on different tomato plants and sealed a plastic bag over each leaf. They repeated this process for the watermelon plants. The plastic bags were left for six hours then they used a syringe to collect any water inside the plastic bag. The volume of water was recorded.

An example of their method can be seen in Fig. 24.1.

Fig. 24.1

be improved.		
1	 	
2	 	
		[4]

(a) Identify two problems with this method and for each problem suggest how the method can

(b) The results of the experiment are shown in Fig. 24.2.

Fig. 24.2

What conclusion can be drawn from this graph? Justify your answer.					
[2					