<u>Trigonometry - 2021/20 GCE AS Mathematics A</u>

1. Oct/2021/Paper_H230/01/No.1

In the triangle ABC, AB = 3, BC = 4 and angle $ABC = 30^{\circ}$. Find the following.

- (a) The area of the triangle. [2]
- (b) The length AC. [2]
- (c) The angle ACB. [3]

- 2. Oct/2021/Paper_H230/02/No.5
 - (a) Show that the equation $2\cos x \tan^2 x = 3(1 + \cos x)$ can be expressed in the form

$$5\cos^2 x + 3\cos x - 2 = 0.$$
 [3]

(b) In this question you must show detailed reasoning.

Hence solve the equation

$$2\cos 3\theta \tan^2 3\theta = 3(1+\cos 3\theta),$$

giving all values of θ between 0° and 120°, correct to 1 decimal place where appropriate. [6]

ocrsolvedexampapers.co.uk

3. Oct/2020/Paper_H230/01/No.3

The diagram shows the curve y = f(x), where f(x) is a cubic polynomial in x. This diagram is repeated in the Printed Answer Booklet.

(a) State the values of x for which
$$f(x) < \frac{1}{2}$$
, giving your answer in set notation. [3]

(b) On the diagram in the Printed Answer Booklet, draw the graph of
$$y = f(-x)$$
. [2]

(c) Explain how you can tell that f(x) cannot be expressed as the product of three real linear factors. [1]

4. Oct/2020/Paper H230/01/No.3

In this question you must show detailed reasoning.

(a) Solve the equation
$$4\sin^2\theta = \tan^2\theta$$
 for $0^\circ \le \theta \le 180^\circ$. [5]

(b) Prove that
$$\frac{\sin^2 \theta - 1 + \cos \theta}{1 - \cos \theta} \equiv \cos \theta \ (\cos \theta \neq 1)$$
. [3]

5. Oct/2020/Paper_H230/02/No.1

The diagram shows a sector AOB of a circle with centre O and radius 9.5 cm. The angle AOB is 25° .

- (a) Calculate the length of the straight line AB. [2]
- (b) Find the area of the segment shaded in the diagram. [3]

6. June/2019/Paper_H230/01/No.3(b)

The polynomial f(x) is defined by $f(x) = 2x^3 + 3x^2 - 8x + 3$.

(b) Hence solve the equation $2\sin^3\theta + 3\sin^2\theta - 8\sin\theta + 3 = 0$ for $0^\circ \le \theta < 360^\circ$. [5]

7. June/2019/Paper_H230/01/No.6

The diagram shows triangle ABC, with AB = x cm, AC = y cm and angle BAC = 60°. It is given that the area of the triangle is $(x+y)\sqrt{3}$ cm².

(a) Show that
$$4x + 4y = xy$$
. [2]

When the vertices of the triangle are placed on the circumference of a circle, AC is a diameter of the circle.

(b) Determine the value of
$$x$$
 and the value of y . [4]

8. June/2019/Paper_H230/02/No.6

In this question you must show detailed reasoning.

(a) Show that the equation $6\cos^2\theta = \tan\theta\cos\theta + 4$ can be expressed in the form $6\sin^2\theta + \sin\theta - 2 = 0$. [2]

The diagram shows parts of the curves $y = 6\cos^2\theta$ and $y = \tan\theta\cos\theta + 4$, where θ is in degrees.

Solve the inequality $6\cos^2\theta > \tan\theta\cos\theta + 4$ for $0^\circ < \theta < 360^\circ$. [5]