You and your genes - 2021/20 GCSE 21st Biology Combined Science B

1. Nov 2021/Paper_J260/01/No.8

Cystic Fibrosis is a genetic condition. It is caused by a mutation in a gene.

(a)	F=	alleles fo dominant ecessive		ene are:				
	The genotype of a person who has cystic fibrosis is ff.							
	Writ	e down th	ne two possible	genotypes of pe	ople that do not have	e cystic fibrosis.		
	1							
	2					[2]		
(b)	Con	nplete ead	ch sentence abo	ut mutations.		,		
	Use	the word	s.					
	You	can use	each word once,	, more than onc	e, or not at all.			
	cau	ght	genotype	inherited	phenotype			
	Ger	etic varia	nts arising from	mutations can b	e			
	Mos	st mutation	ns have no effec	et on		[2]		
(c)	(i)		em cells is a pos or adult human		for cystic fibrosis. St	em cells can be taken from		
		Describe cells.	e one similarity	and one differe	ence in function of	embryonic and adult stem		
		Similarity	<i>y</i>					
		Difference	ce					
						[2]		

	ve one advantage and one disadvantage of using embryonic stem cells in treating stic fibrosis.
Ac	lvantage
Di	sadvantage
	[2]
(i)	Changes in cells can lead to uncontrolled growth and cell division causing disease.
	What name do we use to describe this type of disease?
	[1]
ii)	Leukaemia is a type of this disease which can cause a reduced amount of haemoglobin in red blood cells.
	How will this affect the function of the blood?
	[1]
	Accomplished Accom

2.	Nov 2	020/Paper_J260/01/No.1
	(a)	Put a ring around the correct option to complete each sentence about the structure of DNA

DNA is a long-chain molecule, which is made from smaller molecules called **amino acids** / **nucleotides** / **sugars**.

These smaller molecules join to form a monomer / polymer / protein. Two strands of DNA form a double / single / triple helix. [3] The method for using a light microscope to see a sample of cells is shown below, but is (b) (i) not in the correct order. A higher power objective lens is selected and used to focus the image. A stain is added to the cells. The cells are squashed into a thin layer on the slide. D The lowest objective lens is selected and used to focus the image. The prepared slide is placed on the microscope stage. Write the letters in the boxes to give the correct order for the method. The first one has been done for you. С [3] (ii) A student calculates the length of a plant and animal cell using a light microscope. The length of the plant cell is 100 µm. The length of the animal cell is 25 µm.

How many times bigger is the plant cell compared to the animal cell?

Put a (ring) around the correct answer.

2500 40 4 0.25 [1]

(c)	Animal cells are approximately 10 times bigger than bacterial cells.	
	Which statement about order of magnitude for animal cells and bacterial	cells is true?
	Tick (✓) one box.	
	Animal cells are the same order of magnitude as bacterial cells.	
	Animal cells are ten orders of magnitude bigger than bacterial cells.	
	Animal cells are two orders of magnitude bigger than bacterial cells.	
	Animal cells are one order of magnitude bigger than bacterial cells.	

3.	Nov 2020	/Paper	J260	/01	/No.4
		, . apc.	3-00	,	,

(a)	(i)	Shorthorn cattle were kept by 18th century farmers as they produced both meat a milk.	and
		By the 20th century, farmers used selective breeding to produce two types of shorth cattle:	orn
		Type ${\bf A}$ – cattle that produced a large quantity of good quality meat, but produced limitk.	ittle
		Type B – cattle that produced poor quality meat, but lots of milk.	
		Describe how farmers used selective breeding to produce type A shorthorn cattle.	
			[3]
	(ii)	In the 18th century the human population of the world was approximately 1 billion. The human population of the world now is approximately 8 billion.	
		Suggest two ways in which selective breeding has helped humans.	
		1	
		2	
			[2]
			L-J

(b) Coat colour in cattle is controlled by genes.

A red cow and a black bull reproduce. The coat colour of the offspring is black, as shown in Fig. 4.1.

Fig. 4.1

(i) The dominant allele for coat colour is black.

Write down the genotype of a homozygous red cow and a homozygous black bull.

Use **B** to represent the black allele and **b** to represent the red allele.

Genotype of red cow

Genotype of black bull

[1]

(ii) When a homozygous red cow and a homozygous black bull (first generation) are mated all of the offspring (second generation) are black with the genotype **Bb**.

If the offspring of homozygous red cows and homozygous black bulls (second generation) breed, some of the offspring in the third generation are black **and** some are red.

Complete the Punnett square to show the expected percentage of black cattle and red cattle in the **third** generation.

Percentage of black cattle =%

Percentage of red cattle =% [3]

((iii)	A cow has 60 chromosomes in each of its body cells.							
		Egg cells are produced by meiosis of body cells.							
		How many chromosomes are there in the egg cell of a cow?							
		Tick (✓) one box.							
		15							
		30							
		60							
		120	[1]						
(c)		vs are used in conservation grazing to os maintain biodiversity.	b help prevent grassland turning into woodland. This						
	Dra	w lines to connect each cow behaviou	r with how the behaviour helps maintain biodiversity.						
		Cow behaviour	How behaviour helps maintain biodiversity						
		ow excretes faeces and urine, nich are a form of organic fertiliser.	Allows new plants to start to grow.						
		ows eat large fast-growing acken plants.	Increases the amount of nitrates in the soil.						
		razing produces patches of bare urth.	Reduces competition, so smaller plants can grow.						
	Н	poves tread seeds into the soil.	Seeds are less likely to be eaten by birds.						
			[3]						

4.	Nov 2021	/Paper	J260	/05	/No.7

(a)	Complete each	sentence	about ho	ow the	genetic	material	of a	eukaryotic	cell	relates	to it	s
	function.											

Use the words.

You can use each word once, more than once, or not at all.

allele	amino acids	carbo	hydrates	DNA	enzymes	FSH			
genome	genus	lipid	proteins						
The nucleus	The nucleus contains a copy of the entire genetic material. This is called the								
This is pack	This is packaged into structures called chromosomes.								
Genes in th	Genes in the nucleus tell the cell how to make chemicals called								
Some of the	Some of these chemicals are structural and some act as biological catalysts called								

[4]

The structures and the catalysts allow the cell to carry out its function.

8

(b) Haemophilia is a rare condition that slows the process of blood clotting.

Haemophilia A is caused by a fault in a single gene. The haemophilia A gene is located on the X chromosome but not the Y chromosome.

A male without haemophilia and a female carrier of haemophilia have a child. The Punnett square shows the possible alleles of the offspring.

- (i) Calculate the probabilities of having:

 - a female child with haemophilia

(ii)	Write dow square.	n an example	of a homozy	gous and heterozygous offspring from the	Punnet
	Explain yo	our answers.			
	Homozygo	ous offspring: .			
	Heterozyg	ous offspring:			
	•••••				
					[4]
(iii)	How is a g	gamete represe	ented in the P	unnett square?	
	Put a ring	around the c	orrect answer	:	
	\mathbf{X}^{H}	$\mathbf{X}^{\mathbf{H}}\mathbf{X}^{\mathbf{h}}$	$\mathbf{X}^{\mathbf{H}}\mathbf{Y}$	XY	
	Give one	reason for you	r answer.		
					[2]

	(iv)	Haemophiliacs lack a protein which helps to make blood platelets active.	
		Which statement about the adaptations of platelets is correct?	
		Tick (✓) one box.	
		Platelets are cell fragments which trap red blood cells forming a clot.	
		Platelets are large cells which block wounds.	
		Platelets can stick to the edges of damaged blood vessels and start clot formation.	
		Platelets kill pathogens which enter wounds.	
			[1]
(c)	Eye	colour, like haemophilia, is only determined by genes.	
	Sug	gest two reasons why there are so many different eye colours.	
	1		
	2		
			[2]

Nov 2020/Paper_J260/05/No.3

(a)	Chromosomes are made from DNA.	
	Describe the structure of DNA.	
		[2]
(b)	Chromosomes cannot be seen using a light microscope if a specimen is too thick.	
	Why should a thin layer of a specimen be placed on a microscope slide to see chromosomes?	the
		[1]

(c) (i) A microscope slide prepared with a specimen is placed on the stage of a light microscope.

The first step is to locate the cells and focus the image.

Which combination of objective lens and focus knob should be used for the first step?

Tick (✓) one box.

Objective lens	Focus knob	
×10	Coarse	
×4	Coarse	
×10	Fine	
×4	Fine	

[1]

(ii) Which combination of objective lens and focus knob will allow the cells to be seen in the greatest detail?

Tick (✓) one box.

Objective lens	Focus knob	
×10	Coarse	
×4	Coarse	
×10	Fine	
×4	Fine	

[1]

6. Nov 2020/Paper_J260/05/No.6

(a) James makes a summary table of what he has been taught about communicable diseases.

Complete James's table to identify the pathogen for each communicable disease, and how the communicable disease is spread.

Tick (\checkmark) at least two boxes in each column.

One has been done for you.

		Athlete's foot	HIV/Aids	Influenza	Malaria	Salmonella
	Bacterium					✓
Pathogen	Fungus					
Patriogen	Protist					
	Virus					
	Coughing					
	Food					✓
Spread	Mosquito bite					
	Sexual contact					
	Surfaces					

[4]

(b) Salmonella bacteria can cause food poisoning.

When Salmonella bacteria is swallowed, it must pass through the stomach to get to the small intestine where the Salmonella bacteria reproduce.

Millions of other bacteria live in the small intestine.

Give two re	asons why	large	numbers	of	Salmonella	bacteria	have	to	be	swallowed	for	an
individual to	become ill.											

1			
2	 	 	

[2]

James eats a meal containing 1×10^6 Salmonella bacteria.

Salmonella reproduce approximately every 30 minutes.

(c) (i)

		After four hours James starts to feel ill.	
		How many bacteria were present to make James ill?	
		Assume no bacteria died.	
		Number of bacteria =	[2]
	(***)		
	(ii)	Suggest two reasons why doctors do not usually give antibiotics to people visually size antibiotics and people visually give antibiotics to people visually give antibiotic give antibiotic give antibiotic given given give antibiotic give antibiotic given give antibiotic given given give give antibiotic given g	vitn
		1	
		2	
			[2]
d)	Give	e two advantages of treating communicable diseases with medicines.	
,			
	2		
			[2]

(e) (i) A researcher tested the effectiveness of three different concentrations of antibiotic on the growth of Salmonella bacteria.

Paper discs were soaked in each antibiotic and then placed on an agar plate, which was covered in the *Salmonella* bacteria. One other paper disc was soaked in sterile water as a control disc.

The clear zones are where the bacteria did not grow.

The results are shown in the diagram.

Calculate the cross-sectional area of the clear zone (including the area of the disc) for the most effective concentration of antibiotic.

Use a clear zone diameter given in the diagram.

Use the formula: πr²

 $\pi = 3.14$

	Cross-sectional area =	mm ² [3]
(ii)	Why does the scientist put a control paper disc on the agar plate?	
		[1]

Ιб

(f) Drug companies regularly develop new medicines.

Each new medicine must pass **four** stages of testing before doctors can prescribe them to patients.

Complete the table to show if each stage of testing is clinical or preclinical, and if each stage assesses safety, effectiveness, or both.

Tick (✓) at least two boxes in each row.

Stage	Preclinical	Clinical	Safety	Effectiveness
Animal cells				
Cultured cells				
Healthy volunteers				
Humans with the disease				

[4]

(g) The typical size of a Salmonella bacterium is $4 \mu m$.

The typical size of a virus is 100 nm.

Explain why bacteria and viruses are not the same order of magnitude.

 $1 \mu m = 1000 nm$

7. Nov 2020/Paper J260/05/No.7

Coat colour in shorthorn cattle (bulls and cows) is controlled by two alleles, red, R, and white, W.

The alleles that control coat colour are codominant. This means that cattle with both alleles express **both** colours in their phenotype, as shown in the diagram.

Pure red – genotype RR

Pure white - genotype WW

Roan – genotype RW

(a) When a roan shorthorn cow and a roan shorthorn bull are mated a mixture of white, red and roan offspring are produced.

The farmer counts 23 white, 28 red and 52 roan offspring, in one year.

The farmer thinks these numbers show that **roan** cattle are heterozygous.

Is the farmer correct?

Use the Punnett square to explain your answer.

 	 	[41

(b)* Modern shorthorn cattle have been produced by selective breeding for over 200 years.

Describe how farmers have used selective breeding to produce shorthorn cattle that produce more beef per animal, and explain how selective breeding is different to natural selection.
[6]

8. Nov 2020/Paper_J260/05/No.8

(a) Complete the sentences to describe how the genome affects the phenotype in eukal organisms.

Use words from the list.

You can use each word once, more than once, or not at all.

alleles	amino acids	chromosomes	environment		
gene	genome	genotype	mutation		
nucleus	phenotype	proteins	recessive		
In eukaryotic organisms the is packaged into long molecules of					
called Genes are sections of the DNA. Each gene codes					
particular sequence of, which are synthesised					
into is the characteristic that results					
the combination of and the interaction with the					

(b) DiGeorge syndrome is a genetic disorder caused by the deletion of a small pachromosome 22. The size of the missing section of chromosome 22 varies, as shown i diagram.

′)	The article on DiGeorge syndrome is from a newspaper.	
	Scientists report their work to other scientists in peer-reviewed journals.	
	Why is it important that science is reported in both peer-reviewed journals a newspapers ?	and
	Peer-reviewed journals	
	Newspapers	
		[2]