Complex Numbers – 2022 GCE Pure Core 1 Further Math A Y540

1. June/2022/Paper_ Y540/01/No.3

In this question you must show detailed reasoning.

(a) Find the roots of the equation $2z^2 - 2z + 5 = 0$. [2]

The loci C_1 and C_2 are given by |z| = |z - 2i| and $|z - 2| = \sqrt{5}$ respectively.

- (b) (i) Sketch on a single Argand diagram the loci C₁ and C₂, showing any intercepts with the imaginary axis.
 [3]
 - (ii) Indicate, by shading on your Argand diagram, the region

$$\{z: |z| \le |z-2i|\} \cap \{z: |z-2| \le \sqrt{5}\}.$$
 [1]

- (c) (i) Show that both of the roots of the equation $2z^2 2z + 5 = 0$ satisfy $|z 2| < \sqrt{5}$. [2]
 - (ii) State, with a reason, which root of the equation $2z^2 2z + 5 = 0$ satisfies |z| < |z 2i|. [1]
- (d) On the same Argand diagram as part (b), indicate the positions of the roots of the equation $2z^2 2z + 5 = 0$. [2]

2. June/2022/Paper_ Y540/01/No.9

The cube roots of unity are represented on the Argand diagram below by the points A, B and C.

The points L, M and N are the midpoints of the line segments AB, BC and CA respectively.

Determine a degree 6 polynomial equation with integer coefficients whose roots are the complex numbers represented by the points A, B, C, L, M and N. [5]