Groups – 2022 GCE Additional Pure Further Math A Y545

1. June/2022/Paper_Y545/01/No.8

- (a) Explain why all groups of even order must contain at least one self-inverse element (that is, an element of order 2).
- (b) Prove that any group, in which every (non-identity) element is self-inverse, is abelian. [2]
- (c) A student believes that, if x and y are two distinct, non-identity, self-inverse elements of a group, then the element xy is also self-inverse.

The table shown here is the Cayley table for the non-cyclic group of order 6, having elements i, a, b, c, d and e, where i is the identity.

	i	а	b	с	d	е
i	i	а	b	С	d	е
а	а	i	d	е	b	С
b	b	е	i	d	С	а
С	С	d	е	i	а	b
d	d	С	а	b	е	i
е	е	b	С	а	i	d

By considering the elements of this group, produce a counter-example which proves that this student is wrong. [2]

(d) A group G has order 4n+2, for some positive integer n, and i is the identity element of G. Let x and y be two distinct, non-identity, self-inverse elements of G. By considering the set H = {i, x, y, xy}, prove by contradiction that not all elements of G are self-inverse. [4]