## Integration – 2022 GCE Pure Mathematics A

1. June/2022/Paper\_H240/01/No.9

Use the substitution  $x = 2 \sin \theta$  to show that  $\int_{1}^{\sqrt{3}} \sqrt{4 - x^2} \, dx = \frac{1}{3}\pi.$  [7]

2. June/2022/Paper H240/01/No.11

The gradient function of a curve is given by  $\frac{dy}{dx} = \frac{3x^2 \ln x}{e^{3y}}$ .

The curve passes through the point (e, 1).

- (a) Find the equation of this curve, giving your answer in the form  $e^{3y} = f(x)$ . [6]
- (b) Show that, when  $x = e^2$ , the y-coordinate of this curve can be written as  $y = a + \frac{1}{3} \ln(be^3 + c)$ , where a, b and c are constants to be determined. [3]

3. June/2022/Paper\_H240/02/No.3

(a) Amaya and Ben integrated  $(1+x)^2$ , with respect to x, using different methods, as follows.

Amaya: 
$$\int (1+x)^2 dx = \frac{(1+x)^3}{3} + c = \frac{1}{3} + x + x^2 + \frac{1}{3}x^3 + c$$

Ben: 
$$\int (1+x)^2 dx = \int (1+2x+x^2) dx = x+x^2 + \frac{1}{3}x^3 + c$$

Charlie said that, because these answers are different, at least one of them must be wrong.

Explain whether you agree with Charlie's statement. [1]

- **(b)** You are given that a is a constant greater than 1.
  - (i) Find  $\int_1^a \frac{1}{(1+x)^2} dx$ , giving your answer as a single fraction in terms of the constant a. [3]
  - (ii) You are given that the area enclosed by the curve  $y = \frac{1}{(1+x)^2}$ , the x-axis and the lines x = 1 and x = a is equal to  $\frac{1}{3}$ .

Determine the value of a. [2]

(c) In this question you must show detailed reasoning.

Find the exact value of  $\int_0^{\frac{1}{12}\pi} \frac{\cos 2x}{\sin 2x + 2} dx$ , giving your answer in its simplest form. [4]

## 4. June/2022/Paper H240/02/No.8



The diagram shows a water tank which is shaped as an inverted cone with semi-vertical angle 30° and height 50 cm. Initially the tank is full, and the depth of the water is 50 cm.

Water flows out of a small hole at the bottom of the tank. The rate at which the water flows out is modelled by  $\frac{dV}{dt} = -2h$ , where  $V \text{cm}^3$  is the volume of water remaining and h cm is the depth of water in the tank t seconds after the water begins to flow out.

Determine the time taken for the tank to become empty.

[For a cone with base radius r and height h the volume V is given by  $\frac{1}{3}\pi r^2 h$ .] [7]

## 5. June/2022/Paper\_H240/03/No.6

In this question you must show detailed reasoning.



The diagram shows the curves  $y = \sqrt{2x+9}$  and  $y = 4e^{-2x} - 1$  which intersect on the y-axis. The shaded region is bounded by the curves and the x-axis.

Determine the area of the shaded region, giving your answer in the form  $p+q \ln 2$  where p and q are constants to be determined. [8]