Numerical methods - 2022 GCE Pure Mathematics A

1. June/2022/Paper_H240/01/No.1

The diagram shows part of the curve $y = \sqrt{x^2 - 1}$.

(a) Use the trapezium rule with 4 intervals to find an estimate for $\int_{1}^{3} \sqrt{x^2 - 1} dx$.

Give your answer correct to 3 significant figures.

[4]

(b) State whether the value from part **(a)** is an under-estimate or an over-estimate, giving a reason for your answer.

[1] [1]

(c) Explain how the trapezium rule could be used to obtain a more accurate estimate.

2. June/2022/Paper H240/01/No.10

The diagram shows a sector OAB of a circle with centre O and radius OA. The angle AOB is θ radians. M is the mid-point of OA. The ratio of areas OMB: MAB is 2:3.

(a) Show that $\theta = 1.25 \sin \theta$. [4]

The equation $\theta = 1.25 \sin \theta$ has only one root for $\theta > 0$.

- **(b)** This root can be found by using the iterative formula $\theta_{n+1} = 1.25 \sin \theta_n$ with a starting value of $\theta_1 = 0.5$.
 - Write down the values of θ_2 , θ_3 and θ_4 .
 - Hence find the value of this root correct to 3 significant figures. [3]
- (c) The diagram in the Printed Answer Booklet shows the graph of $y = 1.25 \sin \theta$, for $0 \le \theta \le \pi$.
 - Use this diagram to show how the iterative process used in (b) converges to this root.
 - State the type of convergence. [3]
- (d) Draw a suitable diagram to show why using an iterative process with the formula $\theta_{n+1} = \sin^{-1}(0.8\theta_n)$ does not converge to the root found in (b). [2]

3. June/2022/Paper_H240/03/No.5

In this question you must show detailed reasoning.

The diagram shows the curve with equation $y = \frac{2x-3}{4x^2+1}$. The tangent to the curve at the point P has gradient 2.

(a) Show that the x-coordinate of P satisfies the equation

$$4x^3 + 3x - 3 = 0. [5]$$

- (b) Show by calculation that the x-coordinate of P lies between 0.5 and 1. [2]
- (c) Show that the iteration

$$x_{n+1} = \frac{3 - 4x_n^3}{3}$$

cannot converge to the x-coordinate of P whatever starting value is used. [2]

(d) Use the Newton-Raphson method, with initial value 0.5, to determine the coordinates of *P* correct to 5 decimal places. [5]