Quantum Physics – 2022 GCE Physics A Component 02

1. June/2022/Paper_H556/02/No.15

A gamma-ray photon of frequency 6.76×10^{22} Hz creates a particle-antiparticle pair. The particle-antiparticle pair have zero kinetic energy.

What is the mass of the particle?

- **A** 2.49×10^{-28} kg
- **B** 4.98×10^{-28} kg
- **C** $7.47 \times 10^{-20} \text{kg}$
- **D** $4.48 \times 10^{-11} \text{ kg}$

Your answer		[1]
-------------	--	-----

2. June/2022/Paper H556/02/No.10

A proton of mass 1.67×10^{-27} kg is travelling at a speed of 2.0×10^{5} m s⁻¹.

The table below shows the mass and speed of four particles A, B, C and D.

Particle	Mass/kg	Speed/ $10^5 \mathrm{ms^{-1}}$
Α	9.11 × 10 ⁻³⁰	5.0
В	8.80 × 10 ⁻²⁸	3.0
С	2.49 × 10 ⁻²⁸	2.0
D	3.34 × 10 ⁻²⁷	1.0

Which particle has the same de Broglie wavelength as the proton?

Your answer		[1]
	1	

3	luna	/2022	/Paper	H556	/n2	/No 17
J.	June	/ 2022	/Paper	סככח	/ UZ/	/ INO. I /

A light-emitting diode (LED) can be used to determine the Planck constant *h*. When the LED just starts to emit light, the equation below is valid

$$eV = \frac{hc}{\lambda}$$

where V is the potential difference (p.d.) across the LED, λ is the wavelength of the light emitted, c is the speed of light in vacuum and e is the elementary charge.

(a) In the equation above, $\frac{hc}{\lambda}$ is the energy of a photon emitted from the LED.

Determine the S.I. base units for h.

	base units =[2]
(b)*	Describe how an experiment can be carried out in the laboratory to determine h from a graph. Your description must include how V and λ are accurately determined. Assume that the values of e and c are known.

4. June/2022/Paper H556/02/No.19

The diagram below shows two parallel plates, **E** and **C**, in an evacuated glass tube.

Plate E is made from potassium, which is sensitive to light. Plate C is not sensitive to light.

The separation between the plates is 6.0 mm and the potential difference between the plates is 0.30 V.

Light of frequency $6.3 \times 10^{14}\,\text{Hz}$ is incident on plate **E**. The photoelectrons emitted from this plate have **maximum** kinetic energy $0.30\,\text{eV}$ ($4.8 \times 10^{-20}\,\text{J}$). The photoelectrons are repelled by the negative plate **C**. The ammeter reading is zero because these photoelectrons reach plate **C** with zero kinetic energy.

(a) Calculate the work function of potassium in eV.

work function = eV [3]

- (b) This question is about a photoelectron emitted perpendicular to plate E and with an initial kinetic energy of $4.8 \times 10^{-20} \, \text{J}$.
 - (i) Show that the magnitude of deceleration of this photoelectron is $8.8 \times 10^{12} \, \text{m s}^{-2}$.

(iii) Calculate the time t taken by the photoelectron to travel from plate E to plate C.

t =s [2]

(iv) Using the axes shown below, sketch a graph of kinetic energy $E_{\mathbf{k}}$ against distance x from plate \mathbf{E} .

[2]

[2]

(c) Explain, in terms of photons, what happens to the ammeter reading when light of frequency greater than $6.3 \times 10^{14}\,\text{Hz}$ is now incident on plate **E**.

......[2