Work, Energy and Power – 2022 GCE Mechanics Further Math A Y543

1. June/2022/Paper_ Y543/01/No.1

A car has mass 1200 kg. The total resistance to the car's motion is constant and equal to 250 N.

(a) The car is driven along a straight horizontal road with its engine working at 10 kW.

Find the acceleration of the car at the instant that its speed is $5 \,\mathrm{m\,s}^{-1}$.

[3]

The maximum power that the car's engine can generate is 20 kW.

(b) Find the greatest constant speed at which the car can be driven along a straight horizontal road.

[2]

The car is driven up a straight road which is inclined at an angle θ above the horizontal where $\sin \theta = 0.05$.

(c) Find the greatest constant speed at which the car can be driven up this road.

[2]

2. June/2022/Paper_ Y543/01/No.2

The coordinates of two points, A and B, are (-1, 6) and (5, 12) respectively, where the units of the coordinate axes are metres. A particle P moves from A to B under the action of several forces. The force F = 7i - 2j N is one of the forces acting on P.

(a) Calculate the work done by F on P as P moves from A to B. [2]

At the instant when P reaches B its velocity is -i-5j m s⁻¹.

(b) Find the power generated by F at the instant that P reaches B. [2]

One end of a light elastic string was attached to the origin of the coordinate system and the other to P when P was at A, before it moved to B. The natural length of the string is $8 \,\mathrm{m}$ and its modulus of elasticity is $24 \,\mathrm{N}$.

- (c) At the instant that P reaches B, find the following.
 - · The tension in the string
 - · The elastic potential energy stored in the string

[3]